Adding Exponents

To understand addition of exponents, let's start from a simple example.

Example. Suppose, we want to find 2324{{2}}^{{3}}\cdot{{2}}^{{4}}.

We already learned about positive integer exponets, so we can write, that 23=222{{2}}^{{3}}={2}\cdot{2}\cdot{2} and 24=2222{{2}}^{{4}}={2}\cdot{2}\cdot{2}\cdot{2}.

So, 2324=2222222=27{\color{red}{{{{2}}^{{3}}}}}\cdot{\color{green}{{{{2}}^{{4}}}}}={\color{red}{{{2}\cdot{2}\cdot{2}}}}\cdot{\color{green}{{{2}\cdot{2}\cdot{2}\cdot{2}}}}={{2}}^{{7}}.

Let's see what have we done. We counted number of 2's in 23{{2}}^{{3}}, then counted number of 2's in 24{{2}}^{{4}}. Since we multiplied, then we added number of 2's. Note, that 3+4=7{3}+{4}={7}.

It appears, that this rule works not only for positive integer exponents, it works for any exponent.

Rule for adding exponents: aman=am+n\color{purple}{a^m\cdot a^n=a^{m+n}}.

Word of caution. It doesn't work, when bases are not equal.

For example, 3245=3355555{{3}}^{{2}}\cdot{{4}}^{{5}}={3}\cdot{3}\cdot{5}\cdot{5}\cdot{5}\cdot{5}\cdot{5} which is neither 37{{3}}^{{7}} nor 45{{4}}^{{5}}.

Word of caution. Above rule doesn't work for addition and subtraction.

For example, 23+2427{{2}}^{{3}}+{{2}}^{{4}}\ne{{2}}^{{7}}, because 23+24=8+16=24{{2}}^{{3}}+{{2}}^{{4}}={8}+{16}={24} and 27=128{{2}}^{{7}}={128}. Clearly, 24128{24}\ne{128}.

Example 2. Find 2325{{2}}^{{3}}\cdot{{2}}^{{-{5}}}.

It doesn't matter, that exponent is negative.

Just proceed as always: 2325=23+(5)=22=122=14{{2}}^{{3}}\cdot{{2}}^{{-{5}}}={{2}}^{{{3}+{\left(-{5}\right)}}}={{2}}^{{-{2}}}=\frac{{1}}{{{2}}^{{2}}}=\frac{{1}}{{4}}.

Even when exponents are fractional, we use the same rule!

Example 3. Find 314323{{3}}^{{\frac{{1}}{{4}}}}\cdot{{3}}^{{\frac{{2}}{{3}}}}.

314323=314+23=31112=31112{{3}}^{{\frac{{1}}{{4}}}}\cdot{{3}}^{{\frac{{2}}{{3}}}}={{3}}^{{\frac{{1}}{{4}}+\frac{{2}}{{3}}}}={{3}}^{{\frac{{11}}{{12}}}}={\sqrt[{{12}}]{{{{3}}^{{11}}}}}.

We can handle radicals, also, because radicals can be rewritten with the help of exponent.

Example 4. Rewrite, using positive exponent: 381327{\sqrt[{{8}}]{{{3}}}}\cdot{\sqrt[{{7}}]{{\frac{{1}}{{{3}}^{{2}}}}}}.

First we rewrite numbers, using exponents and then apply the rule:

381327=318327=318327=318+(27)=3956=13956{\sqrt[{{8}}]{{{3}}}}\cdot{\sqrt[{{7}}]{{\frac{{1}}{{{3}}^{{2}}}}}}={{3}}^{{\frac{{1}}{{8}}}}\cdot{\sqrt[{{7}}]{{{{3}}^{{-{2}}}}}}={{3}}^{{\frac{{1}}{{8}}}}\cdot{{3}}^{{-\frac{{2}}{{7}}}}={{3}}^{{\frac{{1}}{{8}}+{\left(-\frac{{2}}{{7}}\right)}}}={{3}}^{{-\frac{{9}}{{56}}}}=\frac{{1}}{{{{3}}^{{\frac{{9}}{{56}}}}}}.

Now, it is time to exercise.

Exercise 1. Find 3235{{3}}^{{2}}\cdot{{3}}^{{5}}.

Answer: 37=2187{{3}}^{{7}}={2187}.

Exercise 2. Can we use rule for adding exponents to find 2535{{2}}^{{5}}\cdot{{3}}^{{5}}?

Answer: No, bases are not equal.

Exercise 3. Find 413423{{4}}^{{\frac{{1}}{{3}}}}\cdot{{4}}^{{\frac{{2}}{{3}}}}.

Answer: 4{4}.

Exercise 4. Find 32315{{3}}^{{2}}\cdot{{3}}^{{-\frac{{1}}{{5}}}}.

Answer: 395{{3}}^{{\frac{{9}}{{5}}}}.

Exercise 5. Find 127798{\sqrt[{{7}}]{{\frac{{1}}{{27}}}}}\cdot{\sqrt[{{8}}]{{{9}}}}.

Answer: 337328=13528{\sqrt[{{7}}]{{{{3}}^{{-{3}}}}}}\cdot{\sqrt[{{8}}]{{{{3}}^{{2}}}}}=\frac{{1}}{{{3}}^{{\frac{{5}}{{28}}}}}.