Subtracting Exponents

To understand subtraction of exponents, let's start from a simple example.

Example. Suppose, we want to find 2724\frac{{{{2}}^{{7}}}}{{{{2}}^{{4}}}}.

We already learned about positive integer exponets, so we can write, that 27=2222222{{2}}^{{7}}={2}\cdot{2}\cdot{2}\cdot{2}\cdot{2}\cdot{2}\cdot{2} and 24=2222{{2}}^{{4}}={2}\cdot{2}\cdot{2}\cdot{2}.

So, 2724=22222222222=222=23\frac{{{{2}}^{{7}}}}{{{{2}}^{{4}}}}=\frac{{{2}\cdot{2}\cdot{2}\cdot{\color{red}{{{2}\cdot{2}\cdot{2}\cdot{2}}}}}}{{{\color{red}{{{2}\cdot{2}\cdot{2}\cdot{2}}}}}}={2}\cdot{2}\cdot{2}={{2}}^{{3}}.

Let's see what have we done. We counted number of 2's in 27{{2}}^{{7}}, then counted number of 2's in 24{{2}}^{{4}}. Since we divided, we canceled common terms. Note, that 74=3{7}-{4}={3}.

It appears, that this rule works not only for positive integer exponents, it works for any exponent.

Rule for subtracting exponents: aman=amn\color{purple}{\frac{a^m}{a^n}=a^{m-n}}.

Word of caution. It doesn't work, when bases are not equal.

For example, 4532=4444433\frac{{{{4}}^{{5}}}}{{{{3}}^{{2}}}}=\frac{{{4}\cdot{4}\cdot{4}\cdot{4}\cdot{4}}}{{{3}\cdot{3}}} which is neither 43{{4}}^{{3}} nor 33{{3}}^{{3}}.

Word of caution. Above rule doesn't work for addition and subtraction.

For example, 272423{{2}}^{{7}}-{{2}}^{{4}}\ne{{2}}^{{3}}, because 2724=12816=112{{2}}^{{7}}-{{2}}^{{4}}={128}-{16}={112} and 23=8{{2}}^{{3}}={8}. Clearly, 1128{112}\ne{8}.

Let's go through a couple of examples.

Example 2. Find 2325\frac{{{{2}}^{{3}}}}{{{{2}}^{{-{5}}}}}.

It doesn't matter, that exponent is negative.

Just proceed as always: 2325=(23(5))=23+5=28\frac{{{{2}}^{{3}}}}{{{{2}}^{{-{5}}}}}={\left({{2}}^{{{3}-{\left(-{5}\right)}}}\right)}={{2}}^{{{3}+{5}}}={{2}}^{{8}}.

Even when exponents are fractional, we use the same rule!

Example 3. Find 314323\frac{{{{3}}^{{\frac{{1}}{{4}}}}}}{{{{3}}^{{\frac{{2}}{{3}}}}}}.

314323=31423=3512=13512\frac{{{{3}}^{{\frac{{1}}{{4}}}}}}{{{{3}}^{{\frac{{2}}{{3}}}}}}={{3}}^{{\frac{{1}}{{4}}-\frac{{2}}{{3}}}}={{3}}^{{-\frac{{5}}{{12}}}}=\frac{{1}}{{{3}}^{{\frac{{5}}{{12}}}}}.

We can handle radicals, also, because radicals can be rewritten with the help of exponent.

Example 4. Rewrite, using positive exponent: 381327\frac{{\sqrt[{{8}}]{{{3}}}}}{{\sqrt[{{7}}]{{\frac{{1}}{{{3}}^{{2}}}}}}}.

First we rewrite numbers, using exponents and then apply the rule:

381327=318327=318327=318(27)=32356\frac{{\sqrt[{{8}}]{{{3}}}}}{{\sqrt[{{7}}]{{\frac{{1}}{{{3}}^{{2}}}}}}}=\frac{{{{3}}^{{\frac{{1}}{{8}}}}}}{{\sqrt[{{7}}]{{{{3}}^{{-{2}}}}}}}=\frac{{{{3}}^{{\frac{{1}}{{8}}}}}}{{{{3}}^{{-\frac{{2}}{{7}}}}}}={{3}}^{{\frac{{1}}{{8}}-{\left(-\frac{{2}}{{7}}\right)}}}={{3}}^{{\frac{{23}}{{56}}}}.

Finally, we can see now, why a0=1{{a}}^{{0}}={1}.

Indeed, a0=ann=anan=1{{a}}^{{0}}={{a}}^{{{n}-{n}}}=\frac{{{{a}}^{{n}}}}{{{{a}}^{{n}}}}={1}.

Now, it is time to exercise.

Exercise 1. Find 3532\frac{{{{3}}^{{5}}}}{{{{3}}^{{2}}}}.

Answer: 33=27{{3}}^{{3}}={27}.

Exercise 2. Can we use rule for adding exponents to find 5535\frac{{{{5}}^{{5}}}}{{{{3}}^{{5}}}}?

Answer: No, bases are not equal.

Exercise 3. Find 453423\frac{{{{4}}^{{\frac{{5}}{{3}}}}}}{{{{4}}^{{\frac{{2}}{{3}}}}}}.

Answer: 4{4}.

Exercise 4. Find 32315\frac{{{{3}}^{{2}}}}{{{{3}}^{{-\frac{{1}}{{5}}}}}}.

Answer: 32+15=3115=3115{{3}}^{{{2}+\frac{{1}}{{5}}}}={{3}}^{{\frac{{11}}{{5}}}}={\sqrt[{{5}}]{{{{3}}^{{11}}}}}.

Exercise 5. Find 127798\frac{{\sqrt[{{7}}]{{\frac{{1}}{{27}}}}}}{{\sqrt[{{8}}]{{{9}}}}}.

Answer: 337328=131928\frac{{\sqrt[{{7}}]{{{{3}}^{{-{3}}}}}}}{{\sqrt[{{8}}]{{{{3}}^{{2}}}}}}=\frac{{1}}{{{3}}^{{\frac{{19}}{{28}}}}}.