The calculator will find the derivative of
cos(et), with steps shown.
Related calculators:
Logarithmic Differentiation Calculator,
Implicit Differentiation Calculator with Steps
Solution
The function cos(et) is the composition f(g(t)) of two functions f(u)=cos(u) and g(t)=et.
Apply the chain rule dtd(f(g(t)))=dud(f(u))dtd(g(t)):
(dtd(cos(et)))=(dud(cos(u))dtd(et))The derivative of the cosine is dud(cos(u))=−sin(u):
(dud(cos(u)))dtd(et)=(−sin(u))dtd(et)Return to the old variable:
−sin((u))dtd(et)=−sin((et))dtd(et)The derivative of the exponential is dtd(et)=et:
−sin(et)(dtd(et))=−sin(et)(et)Thus, dtd(cos(et))=−etsin(et).
Answer
dtd(cos(et))=−etsin(et)A