Derivative of cos(et)\cos{\left(e^{t} \right)}

The calculator will find the derivative of cos(et)\cos{\left(e^{t} \right)}, with steps shown.

Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps

Leave empty for autodetection.
Leave empty, if you don't need the derivative at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find ddt(cos(et))\frac{d}{dt} \left(\cos{\left(e^{t} \right)}\right).

Solution

The function cos(et)\cos{\left(e^{t} \right)} is the composition f(g(t))f{\left(g{\left(t \right)} \right)} of two functions f(u)=cos(u)f{\left(u \right)} = \cos{\left(u \right)} and g(t)=etg{\left(t \right)} = e^{t}.

Apply the chain rule ddt(f(g(t)))=ddu(f(u))ddt(g(t))\frac{d}{dt} \left(f{\left(g{\left(t \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dt} \left(g{\left(t \right)}\right):

(ddt(cos(et)))=(ddu(cos(u))ddt(et)){\color{red}\left(\frac{d}{dt} \left(\cos{\left(e^{t} \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right) \frac{d}{dt} \left(e^{t}\right)\right)}

The derivative of the cosine is ddu(cos(u))=sin(u)\frac{d}{du} \left(\cos{\left(u \right)}\right) = - \sin{\left(u \right)}:

(ddu(cos(u)))ddt(et)=(sin(u))ddt(et){\color{red}\left(\frac{d}{du} \left(\cos{\left(u \right)}\right)\right)} \frac{d}{dt} \left(e^{t}\right) = {\color{red}\left(- \sin{\left(u \right)}\right)} \frac{d}{dt} \left(e^{t}\right)

Return to the old variable:

sin((u))ddt(et)=sin((et))ddt(et)- \sin{\left({\color{red}\left(u\right)} \right)} \frac{d}{dt} \left(e^{t}\right) = - \sin{\left({\color{red}\left(e^{t}\right)} \right)} \frac{d}{dt} \left(e^{t}\right)

The derivative of the exponential is ddt(et)=et\frac{d}{dt} \left(e^{t}\right) = e^{t}:

sin(et)(ddt(et))=sin(et)(et)- \sin{\left(e^{t} \right)} {\color{red}\left(\frac{d}{dt} \left(e^{t}\right)\right)} = - \sin{\left(e^{t} \right)} {\color{red}\left(e^{t}\right)}

Thus, ddt(cos(et))=etsin(et)\frac{d}{dt} \left(\cos{\left(e^{t} \right)}\right) = - e^{t} \sin{\left(e^{t} \right)}.

Answer

ddt(cos(et))=etsin(et)\frac{d}{dt} \left(\cos{\left(e^{t} \right)}\right) = - e^{t} \sin{\left(e^{t} \right)}A