Integral of aua^{u} with respect to uu

The calculator will find the integral/antiderivative of aua^{u} with respect to uu, with steps shown.

Related calculator: Integral Calculator

Solution

Apply the exponential rule audu=auln(a)\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}} with a=aa=a:

audu=auln(a){\color{red}{\int{a^{u} d u}}} = {\color{red}{\frac{a^{u}}{\ln{\left(a \right)}}}}

Therefore,

audu=auln(a)\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}

Add the constant of integration:

audu=auln(a)+C\int{a^{u} d u} = \frac{a^{u}}{\ln{\left(a \right)}}+C

Answer

audu=auln(a)+C\int a^{u}\, du = \frac{a^{u}}{\ln\left(a\right)} + CA