Solution
For the integral ∫ln(x)2dx, use integration by parts ∫udv=uv−∫vdu.
Let u=ln(x)2 and dv=dx.
Then du=(ln(x)2)′dx=x2ln(x)dx (steps can be seen ») and v=∫1dx=x (steps can be seen »).
The integral becomes
∫ln(x)2dx=(ln(x)2⋅x−∫x⋅x2ln(x)dx)=(xln(x)2−∫2ln(x)dx)
Apply the constant multiple rule ∫cf(x)dx=c∫f(x)dx with c=2 and f(x)=ln(x):
xln(x)2−∫2ln(x)dx=xln(x)2−(2∫ln(x)dx)
For the integral ∫ln(x)dx, use integration by parts ∫udv=uv−∫vdu.
Let u=ln(x) and dv=dx.
Then du=(ln(x))′dx=xdx (steps can be seen ») and v=∫1dx=x (steps can be seen »).
The integral becomes
xln(x)2−2∫ln(x)dx=xln(x)2−2(ln(x)⋅x−∫x⋅x1dx)=xln(x)2−2(xln(x)−∫1dx)
Apply the constant rule ∫cdx=cx with c=1:
xln(x)2−2xln(x)+2∫1dx=xln(x)2−2xln(x)+2x
Therefore,
∫ln(x)2dx=xln(x)2−2xln(x)+2x
Simplify:
∫ln(x)2dx=x(ln(x)2−2ln(x)+2)
Add the constant of integration:
∫ln(x)2dx=x(ln(x)2−2ln(x)+2)+C