Solution
Perform partial fraction decomposition (steps can be seen here):
∫x2−11dx=∫(−2(x+1)1+2(x−1)1)dx
Integrate term by term:
∫(−2(x+1)1+2(x−1)1)dx=(∫2(x−1)1dx−∫2(x+1)1dx)
Apply the constant multiple rule ∫cf(x)dx=c∫f(x)dx with c=21 and f(x)=x−11:
−∫2(x+1)1dx+∫2(x−1)1dx=−∫2(x+1)1dx+(2∫x−11dx)
Let u=x−1.
Then du=(x−1)′dx=1dx (steps can be seen »), and we have that dx=du.
So,
−∫2(x+1)1dx+2∫x−11dx=−∫2(x+1)1dx+2∫u1du
The integral of u1 is ∫u1du=ln(∣u∣):
−∫2(x+1)1dx+2∫u1du=−∫2(x+1)1dx+2ln(∣u∣)
Recall that u=x−1:
2ln(∣u∣)−∫2(x+1)1dx=2ln(∣(x−1)∣)−∫2(x+1)1dx
Apply the constant multiple rule ∫cf(x)dx=c∫f(x)dx with c=21 and f(x)=x+11:
2ln(∣x−1∣)−∫2(x+1)1dx=2ln(∣x−1∣)−(2∫x+11dx)
Let u=x+1.
Then du=(x+1)′dx=1dx (steps can be seen »), and we have that dx=du.
Thus,
2ln(∣x−1∣)−2∫x+11dx=2ln(∣x−1∣)−2∫u1du
The integral of u1 is ∫u1du=ln(∣u∣):
2ln(∣x−1∣)−2∫u1du=2ln(∣x−1∣)−2ln(∣u∣)
Recall that u=x+1:
2ln(∣x−1∣)−2ln(∣u∣)=2ln(∣x−1∣)−2ln(∣(x+1)∣)
Therefore,
∫x2−11dx=2ln(∣x−1∣)−2ln(∣x+1∣)
Add the constant of integration:
∫x2−11dx=2ln(∣x−1∣)−2ln(∣x+1∣)+C
Answer: ∫x2−11dx=2ln(∣x−1∣)−2ln(∣x+1∣)+C