Integral of ln(2x+1)\ln\left(2 x + 1\right)

The calculator will find the integral/antiderivative of ln(2x+1)\ln\left(2 x + 1\right), with steps shown.

Related calculator: Integral Calculator

Solution

Let u=2x+1u=2 x + 1.

Then du=(2x+1)dx=2dxdu=\left(2 x + 1\right)^{\prime }dx = 2 dx (steps can be seen »), and we have that dx=du2dx = \frac{du}{2}.

Thus,

ln(2x+1)dx=ln(u)2du{\color{red}{\int{\ln{\left(2 x + 1 \right)} d x}}} = {\color{red}{\int{\frac{\ln{\left(u \right)}}{2} d u}}}

Apply the constant multiple rule cf(u)du=cf(u)du\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du with c=12c=\frac{1}{2} and f(u)=ln(u)f{\left(u \right)} = \ln{\left(u \right)}:

ln(u)2du=(ln(u)du2){\color{red}{\int{\frac{\ln{\left(u \right)}}{2} d u}}} = {\color{red}{\left(\frac{\int{\ln{\left(u \right)} d u}}{2}\right)}}

For the integral ln(u)du\int{\ln{\left(u \right)} d u}, use integration by parts qdv=qvvdq\int \operatorname{q} \operatorname{dv} = \operatorname{q}\operatorname{v} - \int \operatorname{v} \operatorname{dq}.

Let q=ln(u)\operatorname{q}=\ln{\left(u \right)} and dv=du\operatorname{dv}=du.

Then dq=(ln(u))du=duu\operatorname{dq}=\left(\ln{\left(u \right)}\right)^{\prime }du=\frac{du}{u} (steps can be seen ») and v=1du=u\operatorname{v}=\int{1 d u}=u (steps can be seen »).

The integral can be rewritten as

ln(u)du2=(ln(u)uu1udu)2=(uln(u)1du)2\frac{{\color{red}{\int{\ln{\left(u \right)} d u}}}}{2}=\frac{{\color{red}{\left(\ln{\left(u \right)} \cdot u-\int{u \cdot \frac{1}{u} d u}\right)}}}{2}=\frac{{\color{red}{\left(u \ln{\left(u \right)} - \int{1 d u}\right)}}}{2}

Apply the constant rule cdu=cu\int c\, du = c u with c=1c=1:

uln(u)21du2=uln(u)2u2\frac{u \ln{\left(u \right)}}{2} - \frac{{\color{red}{\int{1 d u}}}}{2} = \frac{u \ln{\left(u \right)}}{2} - \frac{{\color{red}{u}}}{2}

Recall that u=2x+1u=2 x + 1:

u2+uln(u)2=(2x+1)2+(2x+1)ln((2x+1))2- \frac{{\color{red}{u}}}{2} + \frac{{\color{red}{u}} \ln{\left({\color{red}{u}} \right)}}{2} = - \frac{{\color{red}{\left(2 x + 1\right)}}}{2} + \frac{{\color{red}{\left(2 x + 1\right)}} \ln{\left({\color{red}{\left(2 x + 1\right)}} \right)}}{2}

Therefore,

ln(2x+1)dx=x+(2x+1)ln(2x+1)212\int{\ln{\left(2 x + 1 \right)} d x} = - x + \frac{\left(2 x + 1\right) \ln{\left(2 x + 1 \right)}}{2} - \frac{1}{2}

Simplify:

ln(2x+1)dx=(2x+1)(ln(2x+1)1)2\int{\ln{\left(2 x + 1 \right)} d x} = \frac{\left(2 x + 1\right) \left(\ln{\left(2 x + 1 \right)} - 1\right)}{2}

Add the constant of integration:

ln(2x+1)dx=(2x+1)(ln(2x+1)1)2+C\int{\ln{\left(2 x + 1 \right)} d x} = \frac{\left(2 x + 1\right) \left(\ln{\left(2 x + 1 \right)} - 1\right)}{2}+C

Answer

ln(2x+1)dx=(2x+1)(ln(2x+1)1)2+C\int \ln\left(2 x + 1\right)\, dx = \frac{\left(2 x + 1\right) \left(\ln\left(2 x + 1\right) - 1\right)}{2} + CA