Calculadora de Decomposição de Frações Parciais
Encontrar frações parciais passo a passo
Esta calculadora online encontrará a decomposição da fração parcial da função racional, com as etapas mostradas.
Solution
Your input: perform the partial fraction decomposition of $$$\frac{x + 7}{x^{2} + 3 x + 2}$$$
Simplify the expression: $$$\frac{x + 7}{x^{2} + 3 x + 2}=\frac{x + 7}{\left(x + 1\right) \left(x + 2\right)}$$$
The form of the partial fraction decomposition is
$$\frac{x + 7}{\left(x + 1\right) \left(x + 2\right)}=\frac{A}{x + 1}+\frac{B}{x + 2}$$
Write the right-hand side as a single fraction:
$$\frac{x + 7}{\left(x + 1\right) \left(x + 2\right)}=\frac{\left(x + 1\right) B + \left(x + 2\right) A}{\left(x + 1\right) \left(x + 2\right)}$$
The denominators are equal, so we require the equality of the numerators:
$$x + 7=\left(x + 1\right) B + \left(x + 2\right) A$$
Expand the right-hand side:
$$x + 7=x A + x B + 2 A + B$$
Collect up the like terms:
$$x + 7=x \left(A + B\right) + 2 A + B$$
The coefficients near the like terms should be equal, so the following system is obtained:
$$\begin{cases} A + B = 1\\2 A + B = 7 \end{cases}$$
Solving it (for steps, see system of equations calculator), we get that $$$A=6$$$, $$$B=-5$$$
Therefore,
$$\frac{x + 7}{\left(x + 1\right) \left(x + 2\right)}=\frac{6}{x + 1}+\frac{-5}{x + 2}$$
Answer: $$$\frac{x + 7}{x^{2} + 3 x + 2}=\frac{6}{x + 1}+\frac{-5}{x + 2}$$$