Derivative of $$$4^{x}$$$
Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps
Your Input
Find $$$\frac{d}{dx} \left(4^{x}\right)$$$.
Solution
Apply the exponential rule $$$\frac{d}{dx} \left(n^{x}\right) = n^{x} \ln\left(n\right)$$$ with $$$n = 4$$$:
$${\color{red}\left(\frac{d}{dx} \left(4^{x}\right)\right)} = {\color{red}\left(4^{x} \ln\left(4\right)\right)}$$Thus, $$$\frac{d}{dx} \left(4^{x}\right) = 4^{x} \ln\left(4\right)$$$.
Answer
$$$\frac{d}{dx} \left(4^{x}\right) = 4^{x} \ln\left(4\right)$$$A