Derivative of $$$\sqrt{x} + \frac{5}{\sqrt{x}}$$$
Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps
Your Input
Find $$$\frac{d}{dx} \left(\sqrt{x} + \frac{5}{\sqrt{x}}\right)$$$.
Solution
The derivative of a sum/difference is the sum/difference of derivatives:
$${\color{red}\left(\frac{d}{dx} \left(\sqrt{x} + \frac{5}{\sqrt{x}}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(\sqrt{x}\right) + \frac{d}{dx} \left(\frac{5}{\sqrt{x}}\right)\right)}$$Apply the constant multiple rule $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ with $$$c = 5$$$ and $$$f{\left(x \right)} = \frac{1}{\sqrt{x}}$$$:
$${\color{red}\left(\frac{d}{dx} \left(\frac{5}{\sqrt{x}}\right)\right)} + \frac{d}{dx} \left(\sqrt{x}\right) = {\color{red}\left(5 \frac{d}{dx} \left(\frac{1}{\sqrt{x}}\right)\right)} + \frac{d}{dx} \left(\sqrt{x}\right)$$Apply the power rule $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ with $$$n = - \frac{1}{2}$$$:
$$5 {\color{red}\left(\frac{d}{dx} \left(\frac{1}{\sqrt{x}}\right)\right)} + \frac{d}{dx} \left(\sqrt{x}\right) = 5 {\color{red}\left(- \frac{1}{2 x^{\frac{3}{2}}}\right)} + \frac{d}{dx} \left(\sqrt{x}\right)$$Apply the power rule $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ with $$$n = \frac{1}{2}$$$:
$${\color{red}\left(\frac{d}{dx} \left(\sqrt{x}\right)\right)} - \frac{5}{2 x^{\frac{3}{2}}} = {\color{red}\left(\frac{1}{2 \sqrt{x}}\right)} - \frac{5}{2 x^{\frac{3}{2}}}$$Simplify:
$$\frac{1}{2 \sqrt{x}} - \frac{5}{2 x^{\frac{3}{2}}} = \frac{x - 5}{2 x^{\frac{3}{2}}}$$Thus, $$$\frac{d}{dx} \left(\sqrt{x} + \frac{5}{\sqrt{x}}\right) = \frac{x - 5}{2 x^{\frac{3}{2}}}$$$.
Answer
$$$\frac{d}{dx} \left(\sqrt{x} + \frac{5}{\sqrt{x}}\right) = \frac{x - 5}{2 x^{\frac{3}{2}}}$$$A