Derivative of $$$x^{3} - 2 x$$$ at $$$x = c$$$

The calculator will find the derivative of $$$x^{3} - 2 x$$$ at $$$x = c$$$, with steps shown.

Related calculators: Logarithmic Differentiation Calculator, Implicit Differentiation Calculator with Steps

Leave empty for autodetection.
Leave empty, if you don't need the derivative at a specific point.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\frac{d}{dx} \left(x^{3} - 2 x\right)$$$ and evaluate it at $$$x = c$$$.

Solution

The derivative of a sum/difference is the sum/difference of derivatives:

$${\color{red}\left(\frac{d}{dx} \left(x^{3} - 2 x\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x^{3}\right) - \frac{d}{dx} \left(2 x\right)\right)}$$

Apply the power rule $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ with $$$n = 3$$$:

$${\color{red}\left(\frac{d}{dx} \left(x^{3}\right)\right)} - \frac{d}{dx} \left(2 x\right) = {\color{red}\left(3 x^{2}\right)} - \frac{d}{dx} \left(2 x\right)$$

Apply the constant multiple rule $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ with $$$c = 2$$$ and $$$f{\left(x \right)} = x$$$:

$$3 x^{2} - {\color{red}\left(\frac{d}{dx} \left(2 x\right)\right)} = 3 x^{2} - {\color{red}\left(2 \frac{d}{dx} \left(x\right)\right)}$$

Apply the power rule $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ with $$$n = 1$$$, in other words, $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$3 x^{2} - 2 {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = 3 x^{2} - 2 {\color{red}\left(1\right)}$$

Thus, $$$\frac{d}{dx} \left(x^{3} - 2 x\right) = 3 x^{2} - 2$$$.

Finally, evaluate the derivative at $$$x = c$$$.

$$$\left(\frac{d}{dx} \left(x^{3} - 2 x\right)\right)|_{\left(x = c\right)} = 3 c^{2} - 2$$$

Answer

$$$\frac{d}{dx} \left(x^{3} - 2 x\right) = 3 x^{2} - 2$$$A

$$$\left(\frac{d}{dx} \left(x^{3} - 2 x\right)\right)|_{\left(x = c\right)} = 3 c^{2} - 2$$$A