Calculadora de Derivada Parcial
Calcular derivadas parciais passo a passo
Esta calculadora online calculará a derivada parcial da função, com as etapas mostradas. Você pode especificar qualquer ordem de integração.
Solution
Your input: find $$$\frac{\partial^{2}}{\partial x^{2}}\left(x^{4} - 4 x y + y^{4} + 1\right)$$$
First, find $$$\frac{\partial}{\partial x}\left(x^{4} - 4 x y + y^{4} + 1\right)$$$
The derivative of a sum/difference is the sum/difference of derivatives:
$${\color{red}{\frac{\partial}{\partial x}\left(x^{4} - 4 x y + y^{4} + 1\right)}}={\color{red}{\left(\frac{\partial}{\partial x}\left(1\right) + \frac{\partial}{\partial x}\left(x^{4}\right) + \frac{\partial}{\partial x}\left(y^{4}\right) - \frac{\partial}{\partial x}\left(4 x y\right)\right)}}$$The derivative of a constant is 0:
$${\color{red}{\frac{\partial}{\partial x}\left(y^{4}\right)}} + \frac{\partial}{\partial x}\left(1\right) + \frac{\partial}{\partial x}\left(x^{4}\right) - \frac{\partial}{\partial x}\left(4 x y\right)={\color{red}{\left(0\right)}} + \frac{\partial}{\partial x}\left(1\right) + \frac{\partial}{\partial x}\left(x^{4}\right) - \frac{\partial}{\partial x}\left(4 x y\right)$$Apply the constant multiple rule $$$\frac{\partial}{\partial x} \left(c \cdot f \right)=c \cdot \frac{\partial}{\partial x} \left(f \right)$$$ with $$$c=4 y$$$ and $$$f=x$$$:
$$- {\color{red}{\frac{\partial}{\partial x}\left(4 x y\right)}} + \frac{\partial}{\partial x}\left(1\right) + \frac{\partial}{\partial x}\left(x^{4}\right)=- {\color{red}{4 y \frac{\partial}{\partial x}\left(x\right)}} + \frac{\partial}{\partial x}\left(1\right) + \frac{\partial}{\partial x}\left(x^{4}\right)$$Apply the power rule $$$\frac{\partial}{\partial x} \left(x^{n} \right)=n\cdot x^{-1+n}$$$ with $$$n=1$$$, in other words $$$\frac{\partial}{\partial x} \left(x \right)=1$$$:
$$- 4 y {\color{red}{\frac{\partial}{\partial x}\left(x\right)}} + \frac{\partial}{\partial x}\left(1\right) + \frac{\partial}{\partial x}\left(x^{4}\right)=- 4 y {\color{red}{1}} + \frac{\partial}{\partial x}\left(1\right) + \frac{\partial}{\partial x}\left(x^{4}\right)$$The derivative of a constant is 0:
$$- 4 y + {\color{red}{\frac{\partial}{\partial x}\left(1\right)}} + \frac{\partial}{\partial x}\left(x^{4}\right)=- 4 y + {\color{red}{\left(0\right)}} + \frac{\partial}{\partial x}\left(x^{4}\right)$$Apply the power rule $$$\frac{\partial}{\partial x} \left(x^{n} \right)=n\cdot x^{-1+n}$$$ with $$$n=4$$$:
$$- 4 y + {\color{red}{\frac{\partial}{\partial x}\left(x^{4}\right)}}=- 4 y + {\color{red}{\left(4 x^{-1 + 4}\right)}}=4 \left(x^{3} - y\right)$$Thus, $$$\frac{\partial}{\partial x}\left(x^{4} - 4 x y + y^{4} + 1\right)=4 \left(x^{3} - y\right)$$$
Next, $$$\frac{\partial^{2}}{\partial x^{2}}\left(x^{4} - 4 x y + y^{4} + 1\right)=\frac{\partial}{\partial x} \left(\frac{\partial}{\partial x}\left(x^{4} - 4 x y + y^{4} + 1\right) \right)=\frac{\partial}{\partial x}\left(4 \left(x^{3} - y\right)\right)$$$
Apply the constant multiple rule $$$\frac{\partial}{\partial x} \left(c \cdot f \right)=c \cdot \frac{\partial}{\partial x} \left(f \right)$$$ with $$$c=4$$$ and $$$f=x^{3} - y$$$:
$${\color{red}{\frac{\partial}{\partial x}\left(4 \left(x^{3} - y\right)\right)}}={\color{red}{\left(4 \frac{\partial}{\partial x}\left(x^{3} - y\right)\right)}}$$The derivative of a sum/difference is the sum/difference of derivatives:
$$4 {\color{red}{\frac{\partial}{\partial x}\left(x^{3} - y\right)}}=4 {\color{red}{\left(\frac{\partial}{\partial x}\left(x^{3}\right) - \frac{\partial}{\partial x}\left(y\right)\right)}}$$Apply the power rule $$$\frac{\partial}{\partial x} \left(x^{n} \right)=n\cdot x^{-1+n}$$$ with $$$n=3$$$:
$$4 \left({\color{red}{\frac{\partial}{\partial x}\left(x^{3}\right)}} - \frac{\partial}{\partial x}\left(y\right)\right)=4 \left({\color{red}{\left(3 x^{-1 + 3}\right)}} - \frac{\partial}{\partial x}\left(y\right)\right)=4 \left(3 x^{2} - \frac{\partial}{\partial x}\left(y\right)\right)$$The derivative of a constant is 0:
$$4 \left(3 x^{2} - {\color{red}{\frac{\partial}{\partial x}\left(y\right)}}\right)=4 \left(3 x^{2} - {\color{red}{\left(0\right)}}\right)$$Thus, $$$\frac{\partial}{\partial x}\left(4 \left(x^{3} - y\right)\right)=12 x^{2}$$$
Therefore, $$$\frac{\partial^{2}}{\partial x^{2}}\left(x^{4} - 4 x y + y^{4} + 1\right)=12 x^{2}$$$
Answer: $$$\frac{\partial^{2}}{\partial x^{2}}\left(x^{4} - 4 x y + y^{4} + 1\right)=12 x^{2}$$$