Unit tangent vector for $$$\mathbf{\vec{r}\left(t\right)} = \left\langle e^{2 t}, e^{-7}\right\rangle$$$ at $$$t = 0$$$
Related calculators: Unit Normal Vector Calculator, Unit Binormal Vector Calculator
Your Input
Find the unit tangent vector for $$$\mathbf{\vec{r}\left(t\right)} = \left\langle e^{2 t}, e^{-7}\right\rangle$$$ at $$$t = 0$$$.
Solution
To find the unit tangent vector, we need to find the derivative of $$$\mathbf{\vec{r}\left(t\right)}$$$ (the tangent vector) and then normalize it (find the unit vector).
$$$\mathbf{\vec{r}^{\prime}\left(t\right)} = \left\langle 2 e^{2 t}, 0\right\rangle$$$ (for steps, see derivative calculator).
Find the unit vector: $$$\mathbf{\vec{T}\left(t\right)} = \left\langle 1, 0\right\rangle$$$ (for steps, see unit vector calculator).
Now, find the vector at $$$t = 0$$$.
$$$\mathbf{\vec{T}\left(0\right)} = \left\langle 1, 0\right\rangle$$$
Answer
The unit tangent vector is $$$\mathbf{\vec{T}\left(t\right)} = \left\langle 1, 0\right\rangle$$$A.
$$$\mathbf{\vec{T}\left(0\right)} = \left\langle 1, 0\right\rangle$$$A