Determinant of $$$\left[\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{\cos{\left(t \right)}}{2}\\0 & - \sin{\left(t \right)}\end{array}\right]$$$

The calculator will find the determinant of the square $$$2$$$x$$$2$$$ matrix $$$\left[\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{\cos{\left(t \right)}}{2}\\0 & - \sin{\left(t \right)}\end{array}\right]$$$, with steps shown.

Related calculator: Cofactor Matrix Calculator

A

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Your Input

Calculate $$$\left|\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{\cos{\left(t \right)}}{2}\\0 & - \sin{\left(t \right)}\end{array}\right|$$$.

Solution

The determinant of a 2x2 matrix is $$$\left|\begin{array}{cc}a & b\\c & d\end{array}\right| = a d - b c$$$.

$$$\left|\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{\cos{\left(t \right)}}{2}\\0 & - \sin{\left(t \right)}\end{array}\right| = \left(\frac{\sqrt{3}}{2}\right)\cdot \left(- \sin{\left(t \right)}\right) - \left(\frac{\cos{\left(t \right)}}{2}\right)\cdot \left(0\right) = - \frac{\sqrt{3} \sin{\left(t \right)}}{2}$$$

Answer

$$$\left|\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{\cos{\left(t \right)}}{2}\\0 & - \sin{\left(t \right)}\end{array}\right| = - \frac{\sqrt{3} \sin{\left(t \right)}}{2}\approx - 0.866025403784439 \sin{\left(t \right)}$$$A