$$$\left(- \frac{4}{57}\right)\cdot \left\langle 5, 4, 4\right\rangle$$$
Your Input
Calculate $$$\left(- \frac{4}{57}\right)\cdot \left\langle 5, 4, 4\right\rangle$$$.
Solution
Multiply each coordinate of the vector by the scalar:
$$${\color{Green}\left(- \frac{4}{57}\right)}\cdot \left\langle 5, 4, 4\right\rangle = \left\langle {\color{Green}\left(- \frac{4}{57}\right)}\cdot \left(5\right), {\color{Green}\left(- \frac{4}{57}\right)}\cdot \left(4\right), {\color{Green}\left(- \frac{4}{57}\right)}\cdot \left(4\right)\right\rangle = \left\langle - \frac{20}{57}, - \frac{16}{57}, - \frac{16}{57}\right\rangle$$$
Answer
$$$\left(- \frac{4}{57}\right)\cdot \left\langle 5, 4, 4\right\rangle = \left\langle - \frac{20}{57}, - \frac{16}{57}, - \frac{16}{57}\right\rangle\approx \left\langle -0.350877192982456, -0.280701754385965, -0.280701754385965\right\rangle$$$A