Prime factorization of $$$27$$$
Your Input
Find the prime factorization of $$$27$$$.
Solution
Start with the number $$$2$$$.
Determine whether $$$27$$$ is divisible by $$$2$$$.
Since it is not divisible, move to the next prime number.
The next prime number is $$$3$$$.
Determine whether $$$27$$$ is divisible by $$$3$$$.
It is divisible, thus, divide $$$27$$$ by $$${\color{green}3}$$$: $$$\frac{27}{3} = {\color{red}9}$$$.
Determine whether $$$9$$$ is divisible by $$$3$$$.
It is divisible, thus, divide $$$9$$$ by $$${\color{green}3}$$$: $$$\frac{9}{3} = {\color{red}3}$$$.
The prime number $$${\color{green}3}$$$ has no other factors then $$$1$$$ and $$${\color{green}3}$$$: $$$\frac{3}{3} = {\color{red}1}$$$.
Since we have obtained $$$1$$$, we are done.
Now, just count the number of occurences of the divisors (green numbers), and write down the prime factorization: $$$27 = 3^{3}$$$.
Answer
The prime factorization is $$$27 = 3^{3}$$$A.