Find P(X=1)P{\left(X = 1 \right)} for the Poisson distribution with mean of 22

The calculator will find the probability that X=1X = 1 for the Poisson distribution with the mean of 22 and variance of 44.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Calculate the various values for the Poisson distribution with λ=2\lambda = 2 and x=1x = 1.

Answer

Mean: μ=λ=2\mu = \lambda = 2A.

Variance: σ2=λ=2\sigma^{2} = \lambda = 2A.

Standard deviation: σ=λ=21.414213562373095\sigma = \sqrt{\lambda} = \sqrt{2}\approx 1.414213562373095A.

P(X=1)0.270670566473225P{\left(X = 1 \right)}\approx 0.270670566473225A

P(X<1)0.135335283236613P{\left(X \lt 1 \right)}\approx 0.135335283236613A

P(X1)0.406005849709838P{\left(X \leq 1 \right)}\approx 0.406005849709838A

P(X>1)0.593994150290162P{\left(X \gt 1 \right)}\approx 0.593994150290162A

P(X1)0.864664716763387P{\left(X \geq 1 \right)}\approx 0.864664716763387A