Solução For the integral ∫ sec 5 ( x ) d x \int{\sec^{5}{\left(x \right)} d x} ∫ sec 5 ( x ) d x , use integration by parts ∫ u dv = u v − ∫ v du \int \operatorname{u} \operatorname{dv}
= \operatorname{u}\operatorname{v} -
\int \operatorname{v} \operatorname{du} ∫ u dv = u v − ∫ v du .
Let u = sec 3 ( x ) \operatorname{u}=\sec^{3}{\left(x \right)} u = sec 3 ( x ) and dv = sec 2 ( x ) d x \operatorname{dv}=\sec^{2}{\left(x \right)} dx dv = sec 2 ( x ) d x .
Then du = ( sec 3 ( x ) ) ′ d x = 3 tan ( x ) sec 3 ( x ) d x \operatorname{du}=\left(\sec^{3}{\left(x \right)}\right)^{\prime }dx=3 \tan{\left(x \right)} \sec^{3}{\left(x \right)} dx du = ( sec 3 ( x ) ) ′ d x = 3 tan ( x ) sec 3 ( x ) d x (steps can be seen » ) and v = ∫ sec 2 ( x ) d x = tan ( x ) \operatorname{v}=\int{\sec^{2}{\left(x \right)} d x}=\tan{\left(x \right)} v = ∫ sec 2 ( x ) d x = tan ( x ) (steps can be seen » ).
The integral becomes
∫ sec 5 ( x ) d x = sec 3 ( x ) ⋅ tan ( x ) − ∫ tan ( x ) ⋅ 3 tan ( x ) sec 3 ( x ) d x = tan ( x ) sec 3 ( x ) − ∫ 3 tan 2 ( x ) sec 3 ( x ) d x \int{\sec^{5}{\left(x \right)} d x}=\sec^{3}{\left(x \right)} \cdot \tan{\left(x \right)}-\int{\tan{\left(x \right)} \cdot 3 \tan{\left(x \right)} \sec^{3}{\left(x \right)} d x}=\tan{\left(x \right)} \sec^{3}{\left(x \right)} - \int{3 \tan^{2}{\left(x \right)} \sec^{3}{\left(x \right)} d x} ∫ sec 5 ( x ) d x = sec 3 ( x ) ⋅ tan ( x ) − ∫ tan ( x ) ⋅ 3 tan ( x ) sec 3 ( x ) d x = tan ( x ) sec 3 ( x ) − ∫ 3 tan 2 ( x ) sec 3 ( x ) d x
Strip out the constant:
tan ( x ) sec 3 ( x ) − ∫ 3 tan 2 ( x ) sec 3 ( x ) d x = tan ( x ) sec 3 ( x ) − 3 ∫ tan 2 ( x ) sec 3 ( x ) d x \tan{\left(x \right)} \sec^{3}{\left(x \right)} - \int{3 \tan^{2}{\left(x \right)} \sec^{3}{\left(x \right)} d x}=\tan{\left(x \right)} \sec^{3}{\left(x \right)} - 3 \int{\tan^{2}{\left(x \right)} \sec^{3}{\left(x \right)} d x} tan ( x ) sec 3 ( x ) − ∫ 3 tan 2 ( x ) sec 3 ( x ) d x = tan ( x ) sec 3 ( x ) − 3 ∫ tan 2 ( x ) sec 3 ( x ) d x
Apply the formula tan 2 ( x ) = sec 2 ( x ) − 1 \tan^{2}{\left(x \right)} = \sec^{2}{\left(x \right)} - 1 tan 2 ( x ) = sec 2 ( x ) − 1 :
tan ( x ) sec 3 ( x ) − 3 ∫ tan 2 ( x ) sec 3 ( x ) d x = tan ( x ) sec 3 ( x ) − 3 ∫ ( sec 2 ( x ) − 1 ) sec 3 ( x ) d x \tan{\left(x \right)} \sec^{3}{\left(x \right)} - 3 \int{\tan^{2}{\left(x \right)} \sec^{3}{\left(x \right)} d x}=\tan{\left(x \right)} \sec^{3}{\left(x \right)} - 3 \int{\left(\sec^{2}{\left(x \right)} - 1\right) \sec^{3}{\left(x \right)} d x} tan ( x ) sec 3 ( x ) − 3 ∫ tan 2 ( x ) sec 3 ( x ) d x = tan ( x ) sec 3 ( x ) − 3 ∫ ( sec 2 ( x ) − 1 ) sec 3 ( x ) d x
Expand:
tan ( x ) sec 3 ( x ) − 3 ∫ ( sec 2 ( x ) − 1 ) sec 3 ( x ) d x = tan ( x ) sec 3 ( x ) − 3 ∫ ( sec 5 ( x ) − sec 3 ( x ) ) d x \tan{\left(x \right)} \sec^{3}{\left(x \right)} - 3 \int{\left(\sec^{2}{\left(x \right)} - 1\right) \sec^{3}{\left(x \right)} d x}=\tan{\left(x \right)} \sec^{3}{\left(x \right)} - 3 \int{\left(\sec^{5}{\left(x \right)} - \sec^{3}{\left(x \right)}\right)d x} tan ( x ) sec 3 ( x ) − 3 ∫ ( sec 2 ( x ) − 1 ) sec 3 ( x ) d x = tan ( x ) sec 3 ( x ) − 3 ∫ ( sec 5 ( x ) − sec 3 ( x ) ) d x
The integral of a difference is the difference of integrals:
tan ( x ) sec 3 ( x ) − 3 ∫ ( sec 5 ( x ) − sec 3 ( x ) ) d x = tan ( x ) sec 3 ( x ) + 3 ∫ sec 3 ( x ) d x − 3 ∫ sec 5 ( x ) d x \tan{\left(x \right)} \sec^{3}{\left(x \right)} - 3 \int{\left(\sec^{5}{\left(x \right)} - \sec^{3}{\left(x \right)}\right)d x}=\tan{\left(x \right)} \sec^{3}{\left(x \right)} + 3 \int{\sec^{3}{\left(x \right)} d x} - 3 \int{\sec^{5}{\left(x \right)} d x} tan ( x ) sec 3 ( x ) − 3 ∫ ( sec 5 ( x ) − sec 3 ( x ) ) d x = tan ( x ) sec 3 ( x ) + 3 ∫ sec 3 ( x ) d x − 3 ∫ sec 5 ( x ) d x
Thus, we get the following simple linear equation with respect to the integral:
∫ sec 5 ( x ) d x = tan ( x ) sec 3 ( x ) + 3 ∫ sec 3 ( x ) d x − 3 ∫ sec 5 ( x ) d x {\color{red}{\int{\sec^{5}{\left(x \right)} d x}}}=\tan{\left(x \right)} \sec^{3}{\left(x \right)} + 3 \int{\sec^{3}{\left(x \right)} d x} - 3 {\color{red}{\int{\sec^{5}{\left(x \right)} d x}}} ∫ s e c 5 ( x ) d x = tan ( x ) sec 3 ( x ) + 3 ∫ sec 3 ( x ) d x − 3 ∫ s e c 5 ( x ) d x
Solving it, we obtain that
∫ sec 5 ( x ) d x = tan ( x ) sec 3 ( x ) 4 + 3 ∫ sec 3 ( x ) d x 4 \int{\sec^{5}{\left(x \right)} d x}=\frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \int{\sec^{3}{\left(x \right)} d x}}{4} ∫ sec 5 ( x ) d x = 4 tan ( x ) sec 3 ( x ) + 4 3 ∫ sec 3 ( x ) d x
For the integral ∫ sec 3 ( x ) d x \int{\sec^{3}{\left(x \right)} d x} ∫ sec 3 ( x ) d x , use integration by parts ∫ u dv = u v − ∫ v du \int \operatorname{u} \operatorname{dv}
= \operatorname{u}\operatorname{v} -
\int \operatorname{v} \operatorname{du} ∫ u dv = u v − ∫ v du .
Let u = sec ( x ) \operatorname{u}=\sec{\left(x \right)} u = sec ( x ) and dv = sec 2 ( x ) d x \operatorname{dv}=\sec^{2}{\left(x \right)} dx dv = sec 2 ( x ) d x .
Then du = ( sec ( x ) ) ′ d x = tan ( x ) sec ( x ) d x \operatorname{du}=\left(\sec{\left(x \right)}\right)^{\prime }dx=\tan{\left(x \right)} \sec{\left(x \right)} dx du = ( sec ( x ) ) ′ d x = tan ( x ) sec ( x ) d x (steps can be seen » ) and v = ∫ sec 2 ( x ) d x = tan ( x ) \operatorname{v}=\int{\sec^{2}{\left(x \right)} d x}=\tan{\left(x \right)} v = ∫ sec 2 ( x ) d x = tan ( x ) (steps can be seen » ).
The integral can be rewritten as
∫ sec 3 ( x ) d x = sec ( x ) ⋅ tan ( x ) − ∫ tan ( x ) ⋅ tan ( x ) sec ( x ) d x = tan ( x ) sec ( x ) − ∫ tan 2 ( x ) sec ( x ) d x \int{\sec^{3}{\left(x \right)} d x}=\sec{\left(x \right)} \cdot \tan{\left(x \right)}-\int{\tan{\left(x \right)} \cdot \tan{\left(x \right)} \sec{\left(x \right)} d x}=\tan{\left(x \right)} \sec{\left(x \right)} - \int{\tan^{2}{\left(x \right)} \sec{\left(x \right)} d x} ∫ sec 3 ( x ) d x = sec ( x ) ⋅ tan ( x ) − ∫ tan ( x ) ⋅ tan ( x ) sec ( x ) d x = tan ( x ) sec ( x ) − ∫ tan 2 ( x ) sec ( x ) d x
Apply the formula tan 2 ( x ) = sec 2 ( x ) − 1 \tan^{2}{\left(x \right)} = \sec^{2}{\left(x \right)} - 1 tan 2 ( x ) = sec 2 ( x ) − 1 :
tan ( x ) sec ( x ) − ∫ tan 2 ( x ) sec ( x ) d x = tan ( x ) sec ( x ) − ∫ ( sec 2 ( x ) − 1 ) sec ( x ) d x \tan{\left(x \right)} \sec{\left(x \right)} - \int{\tan^{2}{\left(x \right)} \sec{\left(x \right)} d x}=\tan{\left(x \right)} \sec{\left(x \right)} - \int{\left(\sec^{2}{\left(x \right)} - 1\right) \sec{\left(x \right)} d x} tan ( x ) sec ( x ) − ∫ tan 2 ( x ) sec ( x ) d x = tan ( x ) sec ( x ) − ∫ ( sec 2 ( x ) − 1 ) sec ( x ) d x
Expand:
tan ( x ) sec ( x ) − ∫ ( sec 2 ( x ) − 1 ) sec ( x ) d x = tan ( x ) sec ( x ) − ∫ ( sec 3 ( x ) − sec ( x ) ) d x \tan{\left(x \right)} \sec{\left(x \right)} - \int{\left(\sec^{2}{\left(x \right)} - 1\right) \sec{\left(x \right)} d x}=\tan{\left(x \right)} \sec{\left(x \right)} - \int{\left(\sec^{3}{\left(x \right)} - \sec{\left(x \right)}\right)d x} tan ( x ) sec ( x ) − ∫ ( sec 2 ( x ) − 1 ) sec ( x ) d x = tan ( x ) sec ( x ) − ∫ ( sec 3 ( x ) − sec ( x ) ) d x
The integral of a difference is the difference of integrals:
tan ( x ) sec ( x ) − ∫ ( sec 3 ( x ) − sec ( x ) ) d x = tan ( x ) sec ( x ) + ∫ sec ( x ) d x − ∫ sec 3 ( x ) d x \tan{\left(x \right)} \sec{\left(x \right)} - \int{\left(\sec^{3}{\left(x \right)} - \sec{\left(x \right)}\right)d x}=\tan{\left(x \right)} \sec{\left(x \right)} + \int{\sec{\left(x \right)} d x} - \int{\sec^{3}{\left(x \right)} d x} tan ( x ) sec ( x ) − ∫ ( sec 3 ( x ) − sec ( x ) ) d x = tan ( x ) sec ( x ) + ∫ sec ( x ) d x − ∫ sec 3 ( x ) d x
Thus, we get the following simple linear equation with respect to the integral:
∫ sec 3 ( x ) d x = tan ( x ) sec ( x ) + ∫ sec ( x ) d x − ∫ sec 3 ( x ) d x {\color{red}{\int{\sec^{3}{\left(x \right)} d x}}}=\tan{\left(x \right)} \sec{\left(x \right)} + \int{\sec{\left(x \right)} d x} - {\color{red}{\int{\sec^{3}{\left(x \right)} d x}}} ∫ s e c 3 ( x ) d x = tan ( x ) sec ( x ) + ∫ sec ( x ) d x − ∫ s e c 3 ( x ) d x
Solving it, we obtain that
∫ sec 3 ( x ) d x = tan ( x ) sec ( x ) 2 + ∫ sec ( x ) d x 2 \int{\sec^{3}{\left(x \right)} d x}=\frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2} + \frac{\int{\sec{\left(x \right)} d x}}{2} ∫ sec 3 ( x ) d x = 2 tan ( x ) sec ( x ) + 2 ∫ sec ( x ) d x
Portanto,
tan ( x ) sec 3 ( x ) 4 + 3 ∫ sec 3 ( x ) d x 4 = tan ( x ) sec 3 ( x ) 4 + 3 ( tan ( x ) sec ( x ) 2 + ∫ sec ( x ) d x 2 ) 4 \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 {\color{red}{\int{\sec^{3}{\left(x \right)} d x}}}}{4} = \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 {\color{red}{\left(\frac{\tan{\left(x \right)} \sec{\left(x \right)}}{2} + \frac{\int{\sec{\left(x \right)} d x}}{2}\right)}}}{4} 4 tan ( x ) sec 3 ( x ) + 4 3 ∫ s e c 3 ( x ) d x = 4 tan ( x ) sec 3 ( x ) + 4 3 ( 2 t a n ( x ) s e c ( x ) + 2 ∫ s e c ( x ) d x )
Rewrite the secant as sec ( x ) = 1 cos ( x ) \sec\left(x\right)=\frac{1}{\cos\left(x\right)} sec ( x ) = c o s ( x ) 1 :
tan ( x ) sec 3 ( x ) 4 + 3 tan ( x ) sec ( x ) 8 + 3 ∫ sec ( x ) d x 8 = tan ( x ) sec 3 ( x ) 4 + 3 tan ( x ) sec ( x ) 8 + 3 ∫ 1 cos ( x ) d x 8 \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\int{\sec{\left(x \right)} d x}}}}{8} = \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{\cos{\left(x \right)}} d x}}}}{8} 4 tan ( x ) sec 3 ( x ) + 8 3 tan ( x ) sec ( x ) + 8 3 ∫ s e c ( x ) d x = 4 tan ( x ) sec 3 ( x ) + 8 3 tan ( x ) sec ( x ) + 8 3 ∫ c o s ( x ) 1 d x
Rewrite the cosine in terms of the sine using the formula cos ( x ) = sin ( x + π 2 ) \cos\left(x\right)=\sin\left(x + \frac{\pi}{2}\right) cos ( x ) = sin ( x + 2 π ) and then rewrite the sine using the double angle formula sin ( x ) = 2 sin ( x 2 ) cos ( x 2 ) \sin\left(x\right)=2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right) sin ( x ) = 2 sin ( 2 x ) cos ( 2 x ) :
tan ( x ) sec 3 ( x ) 4 + 3 tan ( x ) sec ( x ) 8 + 3 ∫ 1 cos ( x ) d x 8 = tan ( x ) sec 3 ( x ) 4 + 3 tan ( x ) sec ( x ) 8 + 3 ∫ 1 2 sin ( x 2 + π 4 ) cos ( x 2 + π 4 ) d x 8 \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{\cos{\left(x \right)}} d x}}}}{8} = \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}}{8} 4 tan ( x ) sec 3 ( x ) + 8 3 tan ( x ) sec ( x ) + 8 3 ∫ c o s ( x ) 1 d x = 4 tan ( x ) sec 3 ( x ) + 8 3 tan ( x ) sec ( x ) + 8 3 ∫ 2 s i n ( 2 x + 4 π ) c o s ( 2 x + 4 π ) 1 d x
Multiply the numerator and denominator by sec 2 ( x 2 + π 4 ) \sec^2\left(\frac{x}{2} + \frac{\pi}{4} \right) sec 2 ( 2 x + 4 π ) :
tan ( x ) sec 3 ( x ) 4 + 3 tan ( x ) sec ( x ) 8 + 3 ∫ 1 2 sin ( x 2 + π 4 ) cos ( x 2 + π 4 ) d x 8 = tan ( x ) sec 3 ( x ) 4 + 3 tan ( x ) sec ( x ) 8 + 3 ∫ sec 2 ( x 2 + π 4 ) 2 tan ( x 2 + π 4 ) d x 8 \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{2 \sin{\left(\frac{x}{2} + \frac{\pi}{4} \right)} \cos{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}}{8} = \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}}{8} 4 tan ( x ) sec 3 ( x ) + 8 3 tan ( x ) sec ( x ) + 8 3 ∫ 2 s i n ( 2 x + 4 π ) c o s ( 2 x + 4 π ) 1 d x = 4 tan ( x ) sec 3 ( x ) + 8 3 tan ( x ) sec ( x ) + 8 3 ∫ 2 t a n ( 2 x + 4 π ) s e c 2 ( 2 x + 4 π ) d x
Let u = tan ( x 2 + π 4 ) u=\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)} u = tan ( 2 x + 4 π ) .
Then d u = ( tan ( x 2 + π 4 ) ) ′ d x = sec 2 ( x 2 + π 4 ) 2 d x du=\left(\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}\right)^{\prime }dx = \frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2} dx d u = ( tan ( 2 x + 4 π ) ) ′ d x = 2 s e c 2 ( 2 x + 4 π ) d x (steps can be seen » ), and we have that sec 2 ( x 2 + π 4 ) d x = 2 d u \sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)} dx = 2 du sec 2 ( 2 x + 4 π ) d x = 2 d u .
So,
tan ( x ) sec 3 ( x ) 4 + 3 tan ( x ) sec ( x ) 8 + 3 ∫ sec 2 ( x 2 + π 4 ) 2 tan ( x 2 + π 4 ) d x 8 = tan ( x ) sec 3 ( x ) 4 + 3 tan ( x ) sec ( x ) 8 + 3 ∫ 1 u d u 8 \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\int{\frac{\sec^{2}{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}{2 \tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}} d x}}}}{8} = \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{u} d u}}}}{8} 4 tan ( x ) sec 3 ( x ) + 8 3 tan ( x ) sec ( x ) + 8 3 ∫ 2 t a n ( 2 x + 4 π ) s e c 2 ( 2 x + 4 π ) d x = 4 tan ( x ) sec 3 ( x ) + 8 3 tan ( x ) sec ( x ) + 8 3 ∫ u 1 d u
The integral of 1 u \frac{1}{u} u 1 is ∫ 1 u d u = ln ( ∣ u ∣ ) \int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)} ∫ u 1 d u = ln ( ∣ u ∣ ) :
tan ( x ) sec 3 ( x ) 4 + 3 tan ( x ) sec ( x ) 8 + 3 ∫ 1 u d u 8 = tan ( x ) sec 3 ( x ) 4 + 3 tan ( x ) sec ( x ) 8 + 3 ln ( ∣ u ∣ ) 8 \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\int{\frac{1}{u} d u}}}}{8} = \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} + \frac{3 {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{8} 4 tan ( x ) sec 3 ( x ) + 8 3 tan ( x ) sec ( x ) + 8 3 ∫ u 1 d u = 4 tan ( x ) sec 3 ( x ) + 8 3 tan ( x ) sec ( x ) + 8 3 l n ( ∣ u ∣ )
Recall that u = tan ( x 2 + π 4 ) u=\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)} u = tan ( 2 x + 4 π ) :
3 ln ( ∣ u ∣ ) 8 + tan ( x ) sec 3 ( x ) 4 + 3 tan ( x ) sec ( x ) 8 = 3 ln ( ∣ tan ( x 2 + π 4 ) ∣ ) 8 + tan ( x ) sec 3 ( x ) 4 + 3 tan ( x ) sec ( x ) 8 \frac{3 \ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{8} + \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} = \frac{3 \ln{\left(\left|{{\color{red}{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}}}\right| \right)}}{8} + \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} 8 3 ln ( ∣ u ∣ ) + 4 tan ( x ) sec 3 ( x ) + 8 3 tan ( x ) sec ( x ) = 8 3 ln ( ∣ ∣ t a n ( 2 x + 4 π ) ∣ ∣ ) + 4 tan ( x ) sec 3 ( x ) + 8 3 tan ( x ) sec ( x )
Portanto,
∫ sec 5 ( x ) d x = 3 ln ( ∣ tan ( x 2 + π 4 ) ∣ ) 8 + tan ( x ) sec 3 ( x ) 4 + 3 tan ( x ) sec ( x ) 8 \int{\sec^{5}{\left(x \right)} d x} = \frac{3 \ln{\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{8} + \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8} ∫ sec 5 ( x ) d x = 8 3 ln ( ∣ ∣ tan ( 2 x + 4 π ) ∣ ∣ ) + 4 tan ( x ) sec 3 ( x ) + 8 3 tan ( x ) sec ( x )
Adicione a constante de integração:
∫ sec 5 ( x ) d x = 3 ln ( ∣ tan ( x 2 + π 4 ) ∣ ) 8 + tan ( x ) sec 3 ( x ) 4 + 3 tan ( x ) sec ( x ) 8 + C \int{\sec^{5}{\left(x \right)} d x} = \frac{3 \ln{\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{8} + \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8}+C ∫ sec 5 ( x ) d x = 8 3 ln ( ∣ ∣ tan ( 2 x + 4 π ) ∣ ∣ ) + 4 tan ( x ) sec 3 ( x ) + 8 3 tan ( x ) sec ( x ) + C
Answer: ∫ sec 5 ( x ) d x = 3 ln ( ∣ tan ( x 2 + π 4 ) ∣ ) 8 + tan ( x ) sec 3 ( x ) 4 + 3 tan ( x ) sec ( x ) 8 + C \int{\sec^{5}{\left(x \right)} d x}=\frac{3 \ln{\left(\left|{\tan{\left(\frac{x}{2} + \frac{\pi}{4} \right)}}\right| \right)}}{8} + \frac{\tan{\left(x \right)} \sec^{3}{\left(x \right)}}{4} + \frac{3 \tan{\left(x \right)} \sec{\left(x \right)}}{8}+C ∫ sec 5 ( x ) d x = 8 3 l n ( ∣ t a n ( 2 x + 4 π ) ∣ ) + 4 t a n ( x ) s e c 3 ( x ) + 8 3 t a n ( x ) s e c ( x ) + C