Jacobian Calculator
Calculate Jacobian step by step
The calculator will find the Jacobian matrix of the set of functions and the Jacobian determinant (if possible), with steps shown.
Your Input
Calculate the Jacobian of $$$\left\{x = r \cos{\left(\theta \right)}, y = r \sin{\left(\theta \right)}\right\}$$$.
Solution
The Jacobian matrix is defined as follows: $$$J{\left(x,y \right)}\left(r, \theta\right) = \left[\begin{array}{cc}\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta}\\\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}\end{array}\right].$$$
In our case, $$$J{\left(x,y \right)}\left(r, \theta\right) = \left[\begin{array}{cc}\frac{\partial}{\partial r} \left(r \cos{\left(\theta \right)}\right) & \frac{\partial}{\partial \theta} \left(r \cos{\left(\theta \right)}\right)\\\frac{\partial}{\partial r} \left(r \sin{\left(\theta \right)}\right) & \frac{\partial}{\partial \theta} \left(r \sin{\left(\theta \right)}\right)\end{array}\right].$$$
Find the derivatives (for steps, see derivative calculator): $$$J{\left(x,y \right)}\left(r, \theta\right) = \left[\begin{array}{cc}\cos{\left(\theta \right)} & - r \sin{\left(\theta \right)}\\\sin{\left(\theta \right)} & r \cos{\left(\theta \right)}\end{array}\right].$$$
The Jacobian determinant is the determinant of the Jacobian matrix: $$$\left|\begin{array}{cc}\cos{\left(\theta \right)} & - r \sin{\left(\theta \right)}\\\sin{\left(\theta \right)} & r \cos{\left(\theta \right)}\end{array}\right| = r$$$ (for steps, see determinant calculator).
Answer
The Jacobian matrix is $$$\left[\begin{array}{cc}\cos{\left(\theta \right)} & - r \sin{\left(\theta \right)}\\\sin{\left(\theta \right)} & r \cos{\left(\theta \right)}\end{array}\right]$$$A.
The Jacobian determinant is $$$r$$$A.