Jacobian Calculator

Calculate Jacobian step by step

The calculator will find the Jacobian matrix of the set of functions and the Jacobian determinant (if possible), with steps shown.

Comma-separated.
Leave empty for autodetection or specify variables like x,y (comma-separated).

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please write it in the comments below.

Your Input

Calculate the Jacobian of $$$\left\{x = r \cos{\left(\tanh{\left(\eta \right)} \right)}, y = r \sin{\left(\tanh{\left(\eta \right)} \right)}\right\}$$$.

Solution

The Jacobian matrix is defined as follows: $$$J{\left(x,y \right)}\left(\eta, r\right) = \left[\begin{array}{cc}\frac{\partial x}{\partial \eta} & \frac{\partial x}{\partial r}\\\frac{\partial y}{\partial \eta} & \frac{\partial y}{\partial r}\end{array}\right].$$$

In our case, $$$J{\left(x,y \right)}\left(\eta, r\right) = \left[\begin{array}{cc}\frac{\partial}{\partial \eta} \left(r \cos{\left(\tanh{\left(\eta \right)} \right)}\right) & \frac{\partial}{\partial r} \left(r \cos{\left(\tanh{\left(\eta \right)} \right)}\right)\\\frac{\partial}{\partial \eta} \left(r \sin{\left(\tanh{\left(\eta \right)} \right)}\right) & \frac{\partial}{\partial r} \left(r \sin{\left(\tanh{\left(\eta \right)} \right)}\right)\end{array}\right].$$$

Find the derivatives (for steps, see derivative calculator): $$$J{\left(x,y \right)}\left(\eta, r\right) = \left[\begin{array}{cc}- r \sin{\left(\tanh{\left(\eta \right)} \right)} \operatorname{sech}^{2}{\left(\eta \right)} & \cos{\left(\tanh{\left(\eta \right)} \right)}\\r \cos{\left(\tanh{\left(\eta \right)} \right)} \operatorname{sech}^{2}{\left(\eta \right)} & \sin{\left(\tanh{\left(\eta \right)} \right)}\end{array}\right].$$$

The Jacobian determinant is the determinant of the Jacobian matrix: $$$\left|\begin{array}{cc}- r \sin{\left(\tanh{\left(\eta \right)} \right)} \operatorname{sech}^{2}{\left(\eta \right)} & \cos{\left(\tanh{\left(\eta \right)} \right)}\\r \cos{\left(\tanh{\left(\eta \right)} \right)} \operatorname{sech}^{2}{\left(\eta \right)} & \sin{\left(\tanh{\left(\eta \right)} \right)}\end{array}\right| = - r \operatorname{sech}^{2}{\left(\eta \right)}$$$ (for steps, see determinant calculator).

Answer

The Jacobian matrix is $$$\left[\begin{array}{cc}- r \sin{\left(\tanh{\left(\eta \right)} \right)} \operatorname{sech}^{2}{\left(\eta \right)} & \cos{\left(\tanh{\left(\eta \right)} \right)}\\r \cos{\left(\tanh{\left(\eta \right)} \right)} \operatorname{sech}^{2}{\left(\eta \right)} & \sin{\left(\tanh{\left(\eta \right)} \right)}\end{array}\right].$$$A

The Jacobian determinant is $$$- r \operatorname{sech}^{2}{\left(\eta \right)}$$$A.