Solution
Find the derivative of r(t): r′(t)=⟨2t,3t2,1⟩ (for steps, see derivative calculator).
Find the derivative of r′(t): r′′(t)=⟨2,6t,0⟩ (for steps, see derivative calculator).
Find the cross product: r′(t)×r′′(t)=⟨−6t,2,6t2⟩ (for steps, see cross product calculator).
Find the magnitude of r′(t)×r′′(t): ∣r′(t)×r′′(t)∣=29t4+9t2+1 (for steps, see magnitude calculator).
Find the derivative of r′′(t): r′′′(t)=⟨0,6,0⟩ (for steps, see derivative calculator).
Find the dot product: (r′(t)×r′′(t))⋅r′′′(t)=12 (for steps, see dot product calculator).
Finally, the torsion is τ(t)=∣r′(t)×r′′(t)∣2(r′(t)×r′′(t))⋅r′′′(t)=9t4+9t2+13.