Eigenvalues and eigenvectors of $$$\left[\begin{array}{cc}8 & 8\\8 & 8\end{array}\right]$$$
Related calculator: Characteristic Polynomial Calculator
Your Input
Find the eigenvalues and eigenvectors of $$$\left[\begin{array}{cc}8 & 8\\8 & 8\end{array}\right]$$$.
Solution
Start from forming a new matrix by subtracting $$$\lambda$$$ from the diagonal entries of the given matrix: $$$\left[\begin{array}{cc}8 - \lambda & 8\\8 & 8 - \lambda\end{array}\right]$$$.
The determinant of the obtained matrix is $$$\lambda \left(\lambda - 16\right)$$$ (for steps, see determinant calculator).
Solve the equation $$$\lambda \left(\lambda - 16\right) = 0$$$.
The roots are $$$\lambda_{1} = 16$$$, $$$\lambda_{2} = 0$$$ (for steps, see equation solver).
These are the eigenvalues.
Next, find the eigenvectors.
$$$\lambda = 16$$$
$$$\left[\begin{array}{cc}8 - \lambda & 8\\8 & 8 - \lambda\end{array}\right] = \left[\begin{array}{cc}-8 & 8\\8 & -8\end{array}\right]$$$
The null space of this matrix is $$$\left\{\left[\begin{array}{c}1\\1\end{array}\right]\right\}$$$ (for steps, see null space calculator).
This is the eigenvector.
$$$\lambda = 0$$$
$$$\left[\begin{array}{cc}8 - \lambda & 8\\8 & 8 - \lambda\end{array}\right] = \left[\begin{array}{cc}8 & 8\\8 & 8\end{array}\right]$$$
The null space of this matrix is $$$\left\{\left[\begin{array}{c}-1\\1\end{array}\right]\right\}$$$ (for steps, see null space calculator).
This is the eigenvector.
Answer
Eigenvalue: $$$16$$$A, multiplicity: $$$1$$$A, eigenvector: $$$\left[\begin{array}{c}1\\1\end{array}\right]$$$A.
Eigenvalue: $$$0$$$A, multiplicity: $$$1$$$A, eigenvector: $$$\left[\begin{array}{c}-1\\1\end{array}\right]$$$A.