Integral von sin4(x)\sin^{4}{\left(x \right)}

Der Rechner ermittelt das Integral/die Antiderivative von sin4(x)\sin^{4}{\left(x \right)} und zeigt die Schritte an.

Zugehöriger Rechner: Rechner für definite und uneigentliche Integrale

Bitte schreiben Sie ohne Differentiale wie dxdx, dydy usw.
Für die automatische Erkennung leer lassen.

Wenn der Rechner etwas nicht berechnet hat, Sie einen Fehler gefunden haben oder Sie einen Vorschlag/Feedback haben, kontaktieren Sie uns bitte.

Ihr Beitrag

Finden Sie sin4(x)dx\int \sin^{4}{\left(x \right)}\, dx.

Lösung

Rewrite the sine using the power reducing formula sin4(α)=cos(2α)2+cos(4α)8+38\sin^{4}{\left(\alpha \right)} = - \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{\cos{\left(4 \alpha \right)}}{8} + \frac{3}{8} with α=x\alpha=x:

sin4(x)dx=(cos(2x)2+cos(4x)8+38)dx{\color{red}{\int{\sin^{4}{\left(x \right)} d x}}} = {\color{red}{\int{\left(- \frac{\cos{\left(2 x \right)}}{2} + \frac{\cos{\left(4 x \right)}}{8} + \frac{3}{8}\right)d x}}}

Apply the constant multiple rule cf(x)dx=cf(x)dx\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx with c=18c=\frac{1}{8} and f(x)=4cos(2x)+cos(4x)+3f{\left(x \right)} = - 4 \cos{\left(2 x \right)} + \cos{\left(4 x \right)} + 3:

(cos(2x)2+cos(4x)8+38)dx=((4cos(2x)+cos(4x)+3)dx8){\color{red}{\int{\left(- \frac{\cos{\left(2 x \right)}}{2} + \frac{\cos{\left(4 x \right)}}{8} + \frac{3}{8}\right)d x}}} = {\color{red}{\left(\frac{\int{\left(- 4 \cos{\left(2 x \right)} + \cos{\left(4 x \right)} + 3\right)d x}}{8}\right)}}

Integrate term by term:

(4cos(2x)+cos(4x)+3)dx8=(3dx4cos(2x)dx+cos(4x)dx)8\frac{{\color{red}{\int{\left(- 4 \cos{\left(2 x \right)} + \cos{\left(4 x \right)} + 3\right)d x}}}}{8} = \frac{{\color{red}{\left(\int{3 d x} - \int{4 \cos{\left(2 x \right)} d x} + \int{\cos{\left(4 x \right)} d x}\right)}}}{8}

Apply the constant rule cdx=cx\int c\, dx = c x with c=3c=3:

4cos(2x)dx8+cos(4x)dx8+3dx8=4cos(2x)dx8+cos(4x)dx8+(3x)8- \frac{\int{4 \cos{\left(2 x \right)} d x}}{8} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} + \frac{{\color{red}{\int{3 d x}}}}{8} = - \frac{\int{4 \cos{\left(2 x \right)} d x}}{8} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} + \frac{{\color{red}{\left(3 x\right)}}}{8}

Apply the constant multiple rule cf(x)dx=cf(x)dx\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx with c=4c=4 and f(x)=cos(2x)f{\left(x \right)} = \cos{\left(2 x \right)}:

3x8+cos(4x)dx84cos(2x)dx8=3x8+cos(4x)dx8(4cos(2x)dx)8\frac{3 x}{8} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{{\color{red}{\int{4 \cos{\left(2 x \right)} d x}}}}{8} = \frac{3 x}{8} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{{\color{red}{\left(4 \int{\cos{\left(2 x \right)} d x}\right)}}}{8}

Let u=2xu=2 x.

Then du=(2x)dx=2dxdu=\left(2 x\right)^{\prime }dx = 2 dx (steps can be seen »), and we have that dx=du2dx = \frac{du}{2}.

Thus,

3x8+cos(4x)dx8cos(2x)dx2=3x8+cos(4x)dx8cos(u)2du2\frac{3 x}{8} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{{\color{red}{\int{\cos{\left(2 x \right)} d x}}}}{2} = \frac{3 x}{8} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2}

Apply the constant multiple rule cf(u)du=cf(u)du\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du with c=12c=\frac{1}{2} and f(u)=cos(u)f{\left(u \right)} = \cos{\left(u \right)}:

3x8+cos(4x)dx8cos(u)2du2=3x8+cos(4x)dx8(cos(u)du2)2\frac{3 x}{8} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2} = \frac{3 x}{8} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{2}

The integral of the cosine is cos(u)du=sin(u)\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}:

3x8+cos(4x)dx8cos(u)du4=3x8+cos(4x)dx8sin(u)4\frac{3 x}{8} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{4} = \frac{3 x}{8} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{{\color{red}{\sin{\left(u \right)}}}}{4}

Recall that u=2xu=2 x:

3x8+cos(4x)dx8sin(u)4=3x8+cos(4x)dx8sin((2x))4\frac{3 x}{8} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{\sin{\left({\color{red}{u}} \right)}}{4} = \frac{3 x}{8} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{\sin{\left({\color{red}{\left(2 x\right)}} \right)}}{4}

Let u=4xu=4 x.

Then du=(4x)dx=4dxdu=\left(4 x\right)^{\prime }dx = 4 dx (steps can be seen »), and we have that dx=du4dx = \frac{du}{4}.

Deshalb,

3x8sin(2x)4+cos(4x)dx8=3x8sin(2x)4+cos(u)4du8\frac{3 x}{8} - \frac{\sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\cos{\left(4 x \right)} d x}}}}{8} = \frac{3 x}{8} - \frac{\sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{8}

Apply the constant multiple rule cf(u)du=cf(u)du\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du with c=14c=\frac{1}{4} and f(u)=cos(u)f{\left(u \right)} = \cos{\left(u \right)}:

3x8sin(2x)4+cos(u)4du8=3x8sin(2x)4+(cos(u)du4)8\frac{3 x}{8} - \frac{\sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{8} = \frac{3 x}{8} - \frac{\sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{4}\right)}}}{8}

The integral of the cosine is cos(u)du=sin(u)\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}:

3x8sin(2x)4+cos(u)du32=3x8sin(2x)4+sin(u)32\frac{3 x}{8} - \frac{\sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{32} = \frac{3 x}{8} - \frac{\sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\sin{\left(u \right)}}}}{32}

Recall that u=4xu=4 x:

3x8sin(2x)4+sin(u)32=3x8sin(2x)4+sin((4x))32\frac{3 x}{8} - \frac{\sin{\left(2 x \right)}}{4} + \frac{\sin{\left({\color{red}{u}} \right)}}{32} = \frac{3 x}{8} - \frac{\sin{\left(2 x \right)}}{4} + \frac{\sin{\left({\color{red}{\left(4 x\right)}} \right)}}{32}

Deshalb,

sin4(x)dx=3x8sin(2x)4+sin(4x)32\int{\sin^{4}{\left(x \right)} d x} = \frac{3 x}{8} - \frac{\sin{\left(2 x \right)}}{4} + \frac{\sin{\left(4 x \right)}}{32}

Vereinfachen:

sin4(x)dx=12x8sin(2x)+sin(4x)32\int{\sin^{4}{\left(x \right)} d x} = \frac{12 x - 8 \sin{\left(2 x \right)} + \sin{\left(4 x \right)}}{32}

Fügen Sie die Integrationskonstante hinzu:

sin4(x)dx=12x8sin(2x)+sin(4x)32+C\int{\sin^{4}{\left(x \right)} d x} = \frac{12 x - 8 \sin{\left(2 x \right)} + \sin{\left(4 x \right)}}{32}+C

Answer: sin4(x)dx=12x8sin(2x)+sin(4x)32+C\int{\sin^{4}{\left(x \right)} d x}=\frac{12 x - 8 \sin{\left(2 x \right)} + \sin{\left(4 x \right)}}{32}+C