Intégrale de sin4(x)\sin^{4}{\left(x \right)}

La calculatrice trouvera l'intégrale/antidérivée de sin4(x)\sin^{4}{\left(x \right)}, avec les étapes indiquées.

Calculatrice associée: Calculatrice d'intégrales définies et impropres

Veuillez écrire sans différentiation telle que dxdx, dydy etc.
Laisser vide pour l'autodétection.

Si la calculatrice n'a pas calculé quelque chose, si vous avez identifié une erreur ou si vous avez une suggestion ou un retour d'information, veuillez nous contacter.

Votre contribution

Trouvez sin4(x)dx\int \sin^{4}{\left(x \right)}\, dx.

Solution

Rewrite the sine using the power reducing formula sin4(α)=cos(2α)2+cos(4α)8+38\sin^{4}{\left(\alpha \right)} = - \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{\cos{\left(4 \alpha \right)}}{8} + \frac{3}{8} with α=x\alpha=x:

sin4(x)dx=(cos(2x)2+cos(4x)8+38)dx{\color{red}{\int{\sin^{4}{\left(x \right)} d x}}} = {\color{red}{\int{\left(- \frac{\cos{\left(2 x \right)}}{2} + \frac{\cos{\left(4 x \right)}}{8} + \frac{3}{8}\right)d x}}}

Apply the constant multiple rule cf(x)dx=cf(x)dx\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx with c=18c=\frac{1}{8} and f(x)=4cos(2x)+cos(4x)+3f{\left(x \right)} = - 4 \cos{\left(2 x \right)} + \cos{\left(4 x \right)} + 3:

(cos(2x)2+cos(4x)8+38)dx=((4cos(2x)+cos(4x)+3)dx8){\color{red}{\int{\left(- \frac{\cos{\left(2 x \right)}}{2} + \frac{\cos{\left(4 x \right)}}{8} + \frac{3}{8}\right)d x}}} = {\color{red}{\left(\frac{\int{\left(- 4 \cos{\left(2 x \right)} + \cos{\left(4 x \right)} + 3\right)d x}}{8}\right)}}

Integrate term by term:

(4cos(2x)+cos(4x)+3)dx8=(3dx4cos(2x)dx+cos(4x)dx)8\frac{{\color{red}{\int{\left(- 4 \cos{\left(2 x \right)} + \cos{\left(4 x \right)} + 3\right)d x}}}}{8} = \frac{{\color{red}{\left(\int{3 d x} - \int{4 \cos{\left(2 x \right)} d x} + \int{\cos{\left(4 x \right)} d x}\right)}}}{8}

Apply the constant rule cdx=cx\int c\, dx = c x with c=3c=3:

4cos(2x)dx8+cos(4x)dx8+3dx8=4cos(2x)dx8+cos(4x)dx8+(3x)8- \frac{\int{4 \cos{\left(2 x \right)} d x}}{8} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} + \frac{{\color{red}{\int{3 d x}}}}{8} = - \frac{\int{4 \cos{\left(2 x \right)} d x}}{8} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} + \frac{{\color{red}{\left(3 x\right)}}}{8}

Apply the constant multiple rule cf(x)dx=cf(x)dx\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx with c=4c=4 and f(x)=cos(2x)f{\left(x \right)} = \cos{\left(2 x \right)}:

3x8+cos(4x)dx84cos(2x)dx8=3x8+cos(4x)dx8(4cos(2x)dx)8\frac{3 x}{8} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{{\color{red}{\int{4 \cos{\left(2 x \right)} d x}}}}{8} = \frac{3 x}{8} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{{\color{red}{\left(4 \int{\cos{\left(2 x \right)} d x}\right)}}}{8}

Let u=2xu=2 x.

Then du=(2x)dx=2dxdu=\left(2 x\right)^{\prime }dx = 2 dx (steps can be seen »), and we have that dx=du2dx = \frac{du}{2}.

C'est pourquoi,

3x8+cos(4x)dx8cos(2x)dx2=3x8+cos(4x)dx8cos(u)2du2\frac{3 x}{8} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{{\color{red}{\int{\cos{\left(2 x \right)} d x}}}}{2} = \frac{3 x}{8} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2}

Apply the constant multiple rule cf(u)du=cf(u)du\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du with c=12c=\frac{1}{2} and f(u)=cos(u)f{\left(u \right)} = \cos{\left(u \right)}:

3x8+cos(4x)dx8cos(u)2du2=3x8+cos(4x)dx8(cos(u)du2)2\frac{3 x}{8} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}}{2} = \frac{3 x}{8} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}}{2}

The integral of the cosine is cos(u)du=sin(u)\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}:

3x8+cos(4x)dx8cos(u)du4=3x8+cos(4x)dx8sin(u)4\frac{3 x}{8} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{4} = \frac{3 x}{8} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{{\color{red}{\sin{\left(u \right)}}}}{4}

Recall that u=2xu=2 x:

3x8+cos(4x)dx8sin(u)4=3x8+cos(4x)dx8sin((2x))4\frac{3 x}{8} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{\sin{\left({\color{red}{u}} \right)}}{4} = \frac{3 x}{8} + \frac{\int{\cos{\left(4 x \right)} d x}}{8} - \frac{\sin{\left({\color{red}{\left(2 x\right)}} \right)}}{4}

Let u=4xu=4 x.

Then du=(4x)dx=4dxdu=\left(4 x\right)^{\prime }dx = 4 dx (steps can be seen »), and we have that dx=du4dx = \frac{du}{4}.

The integral becomes

3x8sin(2x)4+cos(4x)dx8=3x8sin(2x)4+cos(u)4du8\frac{3 x}{8} - \frac{\sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\cos{\left(4 x \right)} d x}}}}{8} = \frac{3 x}{8} - \frac{\sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{8}

Apply the constant multiple rule cf(u)du=cf(u)du\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du with c=14c=\frac{1}{4} and f(u)=cos(u)f{\left(u \right)} = \cos{\left(u \right)}:

3x8sin(2x)4+cos(u)4du8=3x8sin(2x)4+(cos(u)du4)8\frac{3 x}{8} - \frac{\sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\frac{\cos{\left(u \right)}}{4} d u}}}}{8} = \frac{3 x}{8} - \frac{\sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{4}\right)}}}{8}

The integral of the cosine is cos(u)du=sin(u)\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}:

3x8sin(2x)4+cos(u)du32=3x8sin(2x)4+sin(u)32\frac{3 x}{8} - \frac{\sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{32} = \frac{3 x}{8} - \frac{\sin{\left(2 x \right)}}{4} + \frac{{\color{red}{\sin{\left(u \right)}}}}{32}

Recall that u=4xu=4 x:

3x8sin(2x)4+sin(u)32=3x8sin(2x)4+sin((4x))32\frac{3 x}{8} - \frac{\sin{\left(2 x \right)}}{4} + \frac{\sin{\left({\color{red}{u}} \right)}}{32} = \frac{3 x}{8} - \frac{\sin{\left(2 x \right)}}{4} + \frac{\sin{\left({\color{red}{\left(4 x\right)}} \right)}}{32}

C'est pourquoi,

sin4(x)dx=3x8sin(2x)4+sin(4x)32\int{\sin^{4}{\left(x \right)} d x} = \frac{3 x}{8} - \frac{\sin{\left(2 x \right)}}{4} + \frac{\sin{\left(4 x \right)}}{32}

Simplifier :

sin4(x)dx=12x8sin(2x)+sin(4x)32\int{\sin^{4}{\left(x \right)} d x} = \frac{12 x - 8 \sin{\left(2 x \right)} + \sin{\left(4 x \right)}}{32}

Ajouter la constante d'intégration :

sin4(x)dx=12x8sin(2x)+sin(4x)32+C\int{\sin^{4}{\left(x \right)} d x} = \frac{12 x - 8 \sin{\left(2 x \right)} + \sin{\left(4 x \right)}}{32}+C

Answer: sin4(x)dx=12x8sin(2x)+sin(4x)32+C\int{\sin^{4}{\left(x \right)} d x}=\frac{12 x - 8 \sin{\left(2 x \right)} + \sin{\left(4 x \right)}}{32}+C