Integral von 1x2\sqrt{1 - x^{2}}

Der Rechner ermittelt das Integral/die Antiderivative von 1x2\sqrt{1 - x^{2}} und zeigt die Schritte an.

Zugehöriger Rechner: Rechner für definite und uneigentliche Integrale

Bitte schreiben Sie ohne Differentiale wie dxdx, dydy usw.
Für die automatische Erkennung leer lassen.

Wenn der Rechner etwas nicht berechnet hat, Sie einen Fehler gefunden haben oder Sie einen Vorschlag/Feedback haben, kontaktieren Sie uns bitte.

Ihr Beitrag

Finden Sie 1x2dx\int \sqrt{1 - x^{2}}\, dx.

Lösung

Let x=sin(u)x=\sin{\left(u \right)}.

Then dx=(sin(u))du=cos(u)dudx=\left(\sin{\left(u \right)}\right)^{\prime }du = \cos{\left(u \right)} du (steps can be seen »).

Also, it follows that u=asin(x)u=\operatorname{asin}{\left(x \right)}.

Thus,

1x2=1sin2(u)\sqrt{1 - x^{2}} = \sqrt{1 - \sin^{2}{\left( u \right)}}

Use the identity 1sin2(u)=cos2(u)1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}:

1sin2(u)=cos2(u)\sqrt{1 - \sin^{2}{\left( u \right)}}=\sqrt{\cos^{2}{\left( u \right)}}

Assuming that cos(u)0\cos{\left( u \right)} \ge 0, we obtain the following:

cos2(u)=cos(u)\sqrt{\cos^{2}{\left( u \right)}} = \cos{\left( u \right)}

Integral becomes

1x2dx=cos2(u)du{\color{red}{\int{\sqrt{1 - x^{2}} d x}}} = {\color{red}{\int{\cos^{2}{\left(u \right)} d u}}}

Rewrite the cosine using the power reducing formula cos2(α)=cos(2α)2+12\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2} with α=u\alpha= u :

cos2(u)du=(cos(2u)2+12)du{\color{red}{\int{\cos^{2}{\left(u \right)} d u}}} = {\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)d u}}}

Apply the constant multiple rule cf(u)du=cf(u)du\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du with c=12c=\frac{1}{2} and f(u)=cos(2u)+1f{\left(u \right)} = \cos{\left(2 u \right)} + 1:

(cos(2u)2+12)du=((cos(2u)+1)du2){\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)d u}}} = {\color{red}{\left(\frac{\int{\left(\cos{\left(2 u \right)} + 1\right)d u}}{2}\right)}}

Integrate term by term:

(cos(2u)+1)du2=(1du+cos(2u)du)2\frac{{\color{red}{\int{\left(\cos{\left(2 u \right)} + 1\right)d u}}}}{2} = \frac{{\color{red}{\left(\int{1 d u} + \int{\cos{\left(2 u \right)} d u}\right)}}}{2}

Apply the constant rule cdu=cu\int c\, du = c u with c=1c=1:

cos(2u)du2+1du2=cos(2u)du2+u2\frac{\int{\cos{\left(2 u \right)} d u}}{2} + \frac{{\color{red}{\int{1 d u}}}}{2} = \frac{\int{\cos{\left(2 u \right)} d u}}{2} + \frac{{\color{red}{u}}}{2}

Let v=2uv=2 u.

Then dv=(2u)du=2dudv=\left(2 u\right)^{\prime }du = 2 du (steps can be seen »), and we have that du=dv2du = \frac{dv}{2}.

So,

u2+cos(2u)du2=u2+cos(v)2dv2\frac{u}{2} + \frac{{\color{red}{\int{\cos{\left(2 u \right)} d u}}}}{2} = \frac{u}{2} + \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{2}

Apply the constant multiple rule cf(v)dv=cf(v)dv\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv with c=12c=\frac{1}{2} and f(v)=cos(v)f{\left(v \right)} = \cos{\left(v \right)}:

u2+cos(v)2dv2=u2+(cos(v)dv2)2\frac{u}{2} + \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{2} = \frac{u}{2} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{2}\right)}}}{2}

The integral of the cosine is cos(v)dv=sin(v)\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}:

u2+cos(v)dv4=u2+sin(v)4\frac{u}{2} + \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{4} = \frac{u}{2} + \frac{{\color{red}{\sin{\left(v \right)}}}}{4}

Recall that v=2uv=2 u:

u2+sin(v)4=u2+sin((2u))4\frac{u}{2} + \frac{\sin{\left({\color{red}{v}} \right)}}{4} = \frac{u}{2} + \frac{\sin{\left({\color{red}{\left(2 u\right)}} \right)}}{4}

Recall that u=asin(x)u=\operatorname{asin}{\left(x \right)}:

sin(2u)4+u2=sin(2asin(x))4+asin(x)2\frac{\sin{\left(2 {\color{red}{u}} \right)}}{4} + \frac{{\color{red}{u}}}{2} = \frac{\sin{\left(2 {\color{red}{\operatorname{asin}{\left(x \right)}}} \right)}}{4} + \frac{{\color{red}{\operatorname{asin}{\left(x \right)}}}}{2}

Deshalb,

1x2dx=sin(2asin(x))4+asin(x)2\int{\sqrt{1 - x^{2}} d x} = \frac{\sin{\left(2 \operatorname{asin}{\left(x \right)} \right)}}{4} + \frac{\operatorname{asin}{\left(x \right)}}{2}

Using the formulas sin(2asin(α))=2α1α2\sin{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}, sin(2acos(α))=2α1α2\sin{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}, cos(2asin(α))=12α2\cos{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 1 - 2 \alpha^{2}, cos(2acos(α))=2α21\cos{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1, sinh(2asinh(α))=2αα2+1\sinh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha^{2} + 1}, sinh(2acosh(α))=2αα1α+1\sinh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha - 1} \sqrt{\alpha + 1}, cosh(2asinh(α))=2α2+1\cosh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} + 1, cosh(2acosh(α))=2α21\cosh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1, simplify the expression:

1x2dx=x1x22+asin(x)2\int{\sqrt{1 - x^{2}} d x} = \frac{x \sqrt{1 - x^{2}}}{2} + \frac{\operatorname{asin}{\left(x \right)}}{2}

Fügen Sie die Integrationskonstante hinzu:

1x2dx=x1x22+asin(x)2+C\int{\sqrt{1 - x^{2}} d x} = \frac{x \sqrt{1 - x^{2}}}{2} + \frac{\operatorname{asin}{\left(x \right)}}{2}+C

Answer: 1x2dx=x1x22+asin(x)2+C\int{\sqrt{1 - x^{2}} d x}=\frac{x \sqrt{1 - x^{2}}}{2} + \frac{\operatorname{asin}{\left(x \right)}}{2}+C