Intégrale de 1x2\sqrt{1 - x^{2}}

La calculatrice trouvera l'intégrale/antidérivée de 1x2\sqrt{1 - x^{2}}, avec les étapes indiquées.

Calculatrice associée: Calculatrice d'intégrales définies et impropres

Veuillez écrire sans différentiation telle que dxdx, dydy etc.
Laisser vide pour l'autodétection.

Si la calculatrice n'a pas calculé quelque chose, si vous avez identifié une erreur ou si vous avez une suggestion ou un retour d'information, veuillez nous contacter.

Votre contribution

Trouvez 1x2dx\int \sqrt{1 - x^{2}}\, dx.

Solution

Let x=sin(u)x=\sin{\left(u \right)}.

Then dx=(sin(u))du=cos(u)dudx=\left(\sin{\left(u \right)}\right)^{\prime }du = \cos{\left(u \right)} du (steps can be seen »).

Also, it follows that u=asin(x)u=\operatorname{asin}{\left(x \right)}.

Thus,

1x2=1sin2(u)\sqrt{1 - x^{2}} = \sqrt{1 - \sin^{2}{\left( u \right)}}

Use the identity 1sin2(u)=cos2(u)1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}:

1sin2(u)=cos2(u)\sqrt{1 - \sin^{2}{\left( u \right)}}=\sqrt{\cos^{2}{\left( u \right)}}

Assuming that cos(u)0\cos{\left( u \right)} \ge 0, we obtain the following:

cos2(u)=cos(u)\sqrt{\cos^{2}{\left( u \right)}} = \cos{\left( u \right)}

Integral becomes

1x2dx=cos2(u)du{\color{red}{\int{\sqrt{1 - x^{2}} d x}}} = {\color{red}{\int{\cos^{2}{\left(u \right)} d u}}}

Rewrite the cosine using the power reducing formula cos2(α)=cos(2α)2+12\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2} with α=u\alpha= u :

cos2(u)du=(cos(2u)2+12)du{\color{red}{\int{\cos^{2}{\left(u \right)} d u}}} = {\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)d u}}}

Apply the constant multiple rule cf(u)du=cf(u)du\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du with c=12c=\frac{1}{2} and f(u)=cos(2u)+1f{\left(u \right)} = \cos{\left(2 u \right)} + 1:

(cos(2u)2+12)du=((cos(2u)+1)du2){\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)d u}}} = {\color{red}{\left(\frac{\int{\left(\cos{\left(2 u \right)} + 1\right)d u}}{2}\right)}}

Integrate term by term:

(cos(2u)+1)du2=(1du+cos(2u)du)2\frac{{\color{red}{\int{\left(\cos{\left(2 u \right)} + 1\right)d u}}}}{2} = \frac{{\color{red}{\left(\int{1 d u} + \int{\cos{\left(2 u \right)} d u}\right)}}}{2}

Apply the constant rule cdu=cu\int c\, du = c u with c=1c=1:

cos(2u)du2+1du2=cos(2u)du2+u2\frac{\int{\cos{\left(2 u \right)} d u}}{2} + \frac{{\color{red}{\int{1 d u}}}}{2} = \frac{\int{\cos{\left(2 u \right)} d u}}{2} + \frac{{\color{red}{u}}}{2}

Let v=2uv=2 u.

Then dv=(2u)du=2dudv=\left(2 u\right)^{\prime }du = 2 du (steps can be seen »), and we have that du=dv2du = \frac{dv}{2}.

The integral can be rewritten as

u2+cos(2u)du2=u2+cos(v)2dv2\frac{u}{2} + \frac{{\color{red}{\int{\cos{\left(2 u \right)} d u}}}}{2} = \frac{u}{2} + \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{2}

Apply the constant multiple rule cf(v)dv=cf(v)dv\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv with c=12c=\frac{1}{2} and f(v)=cos(v)f{\left(v \right)} = \cos{\left(v \right)}:

u2+cos(v)2dv2=u2+(cos(v)dv2)2\frac{u}{2} + \frac{{\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}}{2} = \frac{u}{2} + \frac{{\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{2}\right)}}}{2}

The integral of the cosine is cos(v)dv=sin(v)\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}:

u2+cos(v)dv4=u2+sin(v)4\frac{u}{2} + \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{4} = \frac{u}{2} + \frac{{\color{red}{\sin{\left(v \right)}}}}{4}

Recall that v=2uv=2 u:

u2+sin(v)4=u2+sin((2u))4\frac{u}{2} + \frac{\sin{\left({\color{red}{v}} \right)}}{4} = \frac{u}{2} + \frac{\sin{\left({\color{red}{\left(2 u\right)}} \right)}}{4}

Recall that u=asin(x)u=\operatorname{asin}{\left(x \right)}:

sin(2u)4+u2=sin(2asin(x))4+asin(x)2\frac{\sin{\left(2 {\color{red}{u}} \right)}}{4} + \frac{{\color{red}{u}}}{2} = \frac{\sin{\left(2 {\color{red}{\operatorname{asin}{\left(x \right)}}} \right)}}{4} + \frac{{\color{red}{\operatorname{asin}{\left(x \right)}}}}{2}

C'est pourquoi,

1x2dx=sin(2asin(x))4+asin(x)2\int{\sqrt{1 - x^{2}} d x} = \frac{\sin{\left(2 \operatorname{asin}{\left(x \right)} \right)}}{4} + \frac{\operatorname{asin}{\left(x \right)}}{2}

Using the formulas sin(2asin(α))=2α1α2\sin{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}, sin(2acos(α))=2α1α2\sin{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}, cos(2asin(α))=12α2\cos{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 1 - 2 \alpha^{2}, cos(2acos(α))=2α21\cos{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1, sinh(2asinh(α))=2αα2+1\sinh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha^{2} + 1}, sinh(2acosh(α))=2αα1α+1\sinh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha - 1} \sqrt{\alpha + 1}, cosh(2asinh(α))=2α2+1\cosh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} + 1, cosh(2acosh(α))=2α21\cosh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1, simplify the expression:

1x2dx=x1x22+asin(x)2\int{\sqrt{1 - x^{2}} d x} = \frac{x \sqrt{1 - x^{2}}}{2} + \frac{\operatorname{asin}{\left(x \right)}}{2}

Ajouter la constante d'intégration :

1x2dx=x1x22+asin(x)2+C\int{\sqrt{1 - x^{2}} d x} = \frac{x \sqrt{1 - x^{2}}}{2} + \frac{\operatorname{asin}{\left(x \right)}}{2}+C

Answer: 1x2dx=x1x22+asin(x)2+C\int{\sqrt{1 - x^{2}} d x}=\frac{x \sqrt{1 - x^{2}}}{2} + \frac{\operatorname{asin}{\left(x \right)}}{2}+C