This calculator will find all
n-th roots (
n=3) of the complex number
−8, with steps shown.
Solution
The polar form of −8 is 8(cos(π)+isin(π)) (for steps, see polar form calculator).
According to the De Moivre's Formula, all n-th roots of a complex number r(cos(θ)+isin(θ)) are given by rn1(cos(nθ+2πk)+isin(nθ+2πk)), k=0..n−1.
We have that r=8, θ=π, and n=3.
- k=0: 38(cos(3π+2⋅π⋅0)+isin(3π+2⋅π⋅0))=2(cos(3π)+isin(3π))=1+3i
- k=1: 38(cos(3π+2⋅π⋅1)+isin(3π+2⋅π⋅1))=2(cos(π)+isin(π))=−2
- k=2: 38(cos(3π+2⋅π⋅2)+isin(3π+2⋅π⋅2))=2(cos(35π)+isin(35π))=1−3i
Answer
3−8=1+3i≈1+1.732050807568877iA
3−8=−2A
3−8=1−3i≈1−1.732050807568877iA