Find 83\sqrt[3]{-8}

This calculator will find all nn-th roots (n=3n = 3) of the complex number 8-8, with steps shown.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find 83\sqrt[3]{-8}.

Solution

The polar form of 8-8 is 8(cos(π)+isin(π))8 \left(\cos{\left(\pi \right)} + i \sin{\left(\pi \right)}\right) (for steps, see polar form calculator).

According to the De Moivre's Formula, all nn-th roots of a complex number r(cos(θ)+isin(θ))r \left(\cos{\left(\theta \right)} + i \sin{\left(\theta \right)}\right) are given by r1n(cos(θ+2πkn)+isin(θ+2πkn))r^{\frac{1}{n}} \left(\cos{\left(\frac{\theta + 2 \pi k}{n} \right)} + i \sin{\left(\frac{\theta + 2 \pi k}{n} \right)}\right), k=0..n1k=\overline{0..n-1}.

We have that r=8r = 8, θ=π\theta = \pi, and n=3n = 3.

  • k=0k = 0: 83(cos(π+2π03)+isin(π+2π03))=2(cos(π3)+isin(π3))=1+3i\sqrt[3]{8} \left(\cos{\left(\frac{\pi + 2\cdot \pi\cdot 0}{3} \right)} + i \sin{\left(\frac{\pi + 2\cdot \pi\cdot 0}{3} \right)}\right) = 2 \left(\cos{\left(\frac{\pi}{3} \right)} + i \sin{\left(\frac{\pi}{3} \right)}\right) = 1 + \sqrt{3} i
  • k=1k = 1: 83(cos(π+2π13)+isin(π+2π13))=2(cos(π)+isin(π))=2\sqrt[3]{8} \left(\cos{\left(\frac{\pi + 2\cdot \pi\cdot 1}{3} \right)} + i \sin{\left(\frac{\pi + 2\cdot \pi\cdot 1}{3} \right)}\right) = 2 \left(\cos{\left(\pi \right)} + i \sin{\left(\pi \right)}\right) = -2
  • k=2k = 2: 83(cos(π+2π23)+isin(π+2π23))=2(cos(5π3)+isin(5π3))=13i\sqrt[3]{8} \left(\cos{\left(\frac{\pi + 2\cdot \pi\cdot 2}{3} \right)} + i \sin{\left(\frac{\pi + 2\cdot \pi\cdot 2}{3} \right)}\right) = 2 \left(\cos{\left(\frac{5 \pi}{3} \right)} + i \sin{\left(\frac{5 \pi}{3} \right)}\right) = 1 - \sqrt{3} i

Answer

83=1+3i1+1.732050807568877i\sqrt[3]{-8} = 1 + \sqrt{3} i\approx 1 + 1.732050807568877 iA

83=2\sqrt[3]{-8} = -2A

83=13i11.732050807568877i\sqrt[3]{-8} = 1 - \sqrt{3} i\approx 1 - 1.732050807568877 iA