This calculator will find all
n-th roots (
n=4) of the complex number
1, with steps shown.
Solution
The polar form of 1 is cos(0)+isin(0) (for steps, see polar form calculator).
According to the De Moivre's Formula, all n-th roots of a complex number r(cos(θ)+isin(θ)) are given by rn1(cos(nθ+2πk)+isin(nθ+2πk)), k=0..n−1.
We have that r=1, θ=0, and n=4.
- k=0: 41(cos(40+2⋅π⋅0)+isin(40+2⋅π⋅0))=cos(0)+isin(0)=1
- k=1: 41(cos(40+2⋅π⋅1)+isin(40+2⋅π⋅1))=cos(2π)+isin(2π)=i
- k=2: 41(cos(40+2⋅π⋅2)+isin(40+2⋅π⋅2))=cos(π)+isin(π)=−1
- k=3: 41(cos(40+2⋅π⋅3)+isin(40+2⋅π⋅3))=cos(23π)+isin(23π)=−i
Answer
41=1A
41=iA
41=−1A
41=−iA