Find 14\sqrt[4]{1}

This calculator will find all nn-th roots (n=4n = 4) of the complex number 11, with steps shown.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find 14\sqrt[4]{1}.

Solution

The polar form of 11 is cos(0)+isin(0)\cos{\left(0 \right)} + i \sin{\left(0 \right)} (for steps, see polar form calculator).

According to the De Moivre's Formula, all nn-th roots of a complex number r(cos(θ)+isin(θ))r \left(\cos{\left(\theta \right)} + i \sin{\left(\theta \right)}\right) are given by r1n(cos(θ+2πkn)+isin(θ+2πkn))r^{\frac{1}{n}} \left(\cos{\left(\frac{\theta + 2 \pi k}{n} \right)} + i \sin{\left(\frac{\theta + 2 \pi k}{n} \right)}\right), k=0..n1k=\overline{0..n-1}.

We have that r=1r = 1, θ=0\theta = 0, and n=4n = 4.

  • k=0k = 0: 14(cos(0+2π04)+isin(0+2π04))=cos(0)+isin(0)=1\sqrt[4]{1} \left(\cos{\left(\frac{0 + 2\cdot \pi\cdot 0}{4} \right)} + i \sin{\left(\frac{0 + 2\cdot \pi\cdot 0}{4} \right)}\right) = \cos{\left(0 \right)} + i \sin{\left(0 \right)} = 1
  • k=1k = 1: 14(cos(0+2π14)+isin(0+2π14))=cos(π2)+isin(π2)=i\sqrt[4]{1} \left(\cos{\left(\frac{0 + 2\cdot \pi\cdot 1}{4} \right)} + i \sin{\left(\frac{0 + 2\cdot \pi\cdot 1}{4} \right)}\right) = \cos{\left(\frac{\pi}{2} \right)} + i \sin{\left(\frac{\pi}{2} \right)} = i
  • k=2k = 2: 14(cos(0+2π24)+isin(0+2π24))=cos(π)+isin(π)=1\sqrt[4]{1} \left(\cos{\left(\frac{0 + 2\cdot \pi\cdot 2}{4} \right)} + i \sin{\left(\frac{0 + 2\cdot \pi\cdot 2}{4} \right)}\right) = \cos{\left(\pi \right)} + i \sin{\left(\pi \right)} = -1
  • k=3k = 3: 14(cos(0+2π34)+isin(0+2π34))=cos(3π2)+isin(3π2)=i\sqrt[4]{1} \left(\cos{\left(\frac{0 + 2\cdot \pi\cdot 3}{4} \right)} + i \sin{\left(\frac{0 + 2\cdot \pi\cdot 3}{4} \right)}\right) = \cos{\left(\frac{3 \pi}{2} \right)} + i \sin{\left(\frac{3 \pi}{2} \right)} = - i

Answer

14=1\sqrt[4]{1} = 1A

14=i\sqrt[4]{1} = iA

14=1\sqrt[4]{1} = -1A

14=i\sqrt[4]{1} = - iA