Propriedades do círculo $$$\left(x + 9\right)^{2} + \left(y - 6\right)^{2} = 102$$$
Calculadoras relacionadas: calculadora de parábola, Calculadora de Elipse, calculadora de hipérbole, Calculadora de Seções Cônicas
Sua entrada
Encontre o centro, raio, diâmetro, circunferência, área, excentricidade, excentricidade linear, interceptações x, interceptações y, domínio e alcance do círculo $$$\left(x + 9\right)^{2} + \left(y - 6\right)^{2} = 102$$$.
Solução
A forma padrão da equação de um círculo é $$$\left(x - h\right)^{2} + \left(y - k\right)^{2} = r^{2}$$$, onde $$$\left(h, k\right)$$$ é o centro do círculo e $$$r$$$ é o raio.
Nosso círculo nesta forma é $$$\left(x - \left(-9\right)\right)^{2} + \left(y - 6\right)^{2} = \left(\sqrt{102}\right)^{2}$$$.
Assim, $$$h = -9$$$, $$$k = 6$$$, $$$r = \sqrt{102}$$$.
O formulário padrão é $$$\left(x + 9\right)^{2} + \left(y - 6\right)^{2} = 102$$$.
A forma geral pode ser encontrada movendo tudo para o lado esquerdo e expandindo (se necessário): $$$x^{2} + 18 x + y^{2} - 12 y + 15 = 0$$$.
Centro: $$$\left(-9, 6\right)$$$.
Raio: $$$r = \sqrt{102}$$$.
Diâmetro: $$$d = 2 r = 2 \sqrt{102}$$$.
Circunferência: $$$C = 2 \pi r = 2 \sqrt{102} \pi$$$.
Área: $$$A = \pi r^{2} = 102 \pi$$$.
Tanto a excentricidade quanto a excentricidade linear de um círculo são iguais a $$$0$$$.
As interceptações x podem ser encontradas definindo $$$y = 0$$$ na equação e resolvendo para $$$x$$$ (para conhecer as etapas, consulte calculadora de interceptações).
interceptações x: $$$\left(-9 - \sqrt{66}, 0\right)$$$, $$$\left(-9 + \sqrt{66}, 0\right)$$$
As interceptações y podem ser encontradas definindo $$$x = 0$$$ na equação e resolvendo para $$$y$$$: (para conhecer as etapas, consulte calculadora de interceptações).
interceptações y: $$$\left(0, 6 - \sqrt{21}\right)$$$, $$$\left(0, \sqrt{21} + 6\right)$$$
O domínio é $$$\left[h - r, h + r\right] = \left[- \sqrt{102} - 9, -9 + \sqrt{102}\right]$$$.
O intervalo é $$$\left[k - r, k + r\right] = \left[6 - \sqrt{102}, 6 + \sqrt{102}\right]$$$.
Responder
Forma/equação padrão: $$$\left(x + 9\right)^{2} + \left(y - 6\right)^{2} = 102$$$A.
Forma geral/equação: $$$x^{2} + 18 x + y^{2} - 12 y + 15 = 0$$$A.
Gráfico: consulte a calculadora gráfica.
Centro: $$$\left(-9, 6\right)$$$A.
Raio: $$$\sqrt{102}\approx 10.099504938362078$$$A.
Diâmetro: $$$2 \sqrt{102}\approx 20.199009876724156$$$A.
Circunferência: $$$2 \sqrt{102} \pi\approx 63.457061038504283$$$A.
Área: $$$102 \pi\approx 320.44245066615891$$$A.
Excentricidade: $$$0$$$A.
Excentricidade linear: $$$0$$$A.
interceptações x: $$$\left(-9 - \sqrt{66}, 0\right)\approx \left(-17.12403840463596, 0\right)$$$, $$$\left(-9 + \sqrt{66}, 0\right)\approx \left(-0.87596159536404, 0\right)$$$A
interceptações y: $$$\left(0, 6 - \sqrt{21}\right)\approx \left(0, 1.41742430504416\right)$$$, $$$\left(0, \sqrt{21} + 6\right)\approx \left(0, 10.58257569495584\right)$$$A
Domínio: $$$\left[- \sqrt{102} - 9, -9 + \sqrt{102}\right]\approx \left[-19.099504938362078, 1.099504938362078\right].$$$A
Intervalo: $$$\left[6 - \sqrt{102}, 6 + \sqrt{102}\right]\approx \left[-4.099504938362078, 16.099504938362078\right].$$$A